
MACBAS’2014
December 2014 - April 2015

Macro-assembler, monitor, debugger and sourcer
the SHARP PC-1500/A and TRS80 PC-2

Copyright 1990 - 1995 - 2012 - 2014 - 2015 - Christophe Gottheimer

MACBAS2014 is a macro-assembler, monitor, debugger and sourcer for the SHARP
PC-1500/A and TANDY PC-2.

MACBAS2014 is copyright 1990-1995-2010-2015 Christophe Gottheimer <cgh750215@gmail.com>

This code is distributed under the terms of the GNU Public License (GPL) version 2.

This version is still in beta release. It is fully mature but bugs may be still present.

+------------------- DISCLAIMER --------------------+
| YOU USE THIS CODE AT YOUR OWN RISK ! I AM NOT |
| RESPONSIBLE FOR ANY DAMMAGE OR ANY DATA LOST OR |
| CORRUPTED BY USING THIS SOFTWARE OR BY USING THE |
| BINARY IMAGES CREATED WITH THIS SOFTWARE WHILE |
| RUNNING THEM ON A SHARP PC-1500/A or TANDY PC-2. |
| BE SURE TO SAVE YOUR IMPORTANT DATA OR PROGRAMS |
| BEFORE LOADING AND RUNNING THE BINARY IMAGES. |
+---+

MACBAS2014 is written in assembly language. It was firstly developed directly on a
SHARP PC-1500 with the software XMON.

MACBAS2014 requires the lhTools version 0.7.2 or higher to be assembled from the
sources.

IMPORTANT NOTE

MACBAS2014 is NOT compatible with the CE-150 printer or the CE-158 serial interface
because MACBAS2014 uses the same memory area for its pointers than these peripherals.
Also some BASIC commands have the same internal code between a CE-158 and
MACBAS2014. However note that MACBAS2014 is fully compatible with the CE-150 or
CE-162 audio interfaces. Historically, this was because I do not own such interface on the
first development.

• If you expect to use a CE-150 or a CE-158, you should first “exit” from
MACBAS2014. To do so, you may “reset” the computer by a CALL &E000 or just
by a POKE &79D4,0 and a POWER-OFF/ON.

• The line settings of the CE-158 should be reinitialized by a SETCOM.
• The CE-150 settings should also be reinitialized by a POWER-OFF/ON.
• To return to MACBAS2014, just do

POKE &79D1,&8
POKE &79D4,&55

When returning to MACBAS2014, its pointers and LM registers are corrupted. Be sure to
reinitialize them with REGS and DEF+(up-arrow).

1/ Installation

MACBAS2014 requires a ROM version A02 or higher. Try a PEEK &E2B9. If you get 56,
you have a good ROM to run MACBAS2014. Else, it will be not possible to run the software.
Note that all PC-1500A have always the good ROM.

MACBAS2014 needs 8 Kbytes of amount of memory. The remaining memory is free for
assembler sources and binaries. MACBAS2014 is provided with an image for each modules:
CE-151 (requires a PC-1500A), CE-155, CE-159 and CE-161/163 (same image).

Before loading the image of MACBAS2014, be sure to save your work and all programs or
variables.

To load MACBAS2014, switch to PRO mode and do:
• CE-151: NEW &6000
• CE-155: NEW &4800
• CE-159: NEW &4000
• CE-161/163: NEW &2000

Note that the address after the NEW will set the base address for the BASIC program and
reserve some space free. You may specify another address greater than this specified, but not
below, else the BASIC program you enter will overwrite MACBAS2014. It is highly
recommended to reserve also some space for binary code and the symbols table. If you want
to reserve &800 (2kbytes) for assembly code and symbols, change the values to &6800,
&5000, &3800 or &2800 respectively.

The range addresses reserved for MACBAS2014 is shown below (full images):
• CE-151: &40C5..&5FFF
• CE-155: &38C5..&47FF
• CE-159: &20C5..&3FFF
• CE-161/163: &00C5..&1FFF

The range addresses reserved for MACBAS2014 is shown below (reduced images):
• CE-151: &40C5..&5D7F
• CE-155: &38C5..&557F
• CE-159: &20C5..&3D7F
• CE-161/163: &00C5..&1D7F

1.1/ Images naming

MACBAS2014 is delivered with 2 kinds of images: .wav for audio download with the
CE-150 or CE-162 cassette interface and .bin158 for a serial download with the CE-158
serial interface.

The full images come with the SRCS command. The reduced images without; this give 640
bytes more free for small memory module.

The 2 keyboard layouts are also provided. Choose k1 or k2 according the layout you prefer.

The images naming is Images/full/macbas2014-kN-ceMMM.XXX for full image and
Images/reduced/macbas2014-kN-ceMMM.XXX where N is the keyboard layout (1
or 2), MMM is the module (151, 155, 159 or 161 [also for CE-163]), and XXX is .wav for
audio or .bin158 for serial.

The .bin158 are binary images with the CE-158 header included to a download with the
CLOAD M command.

1.2/ Audio download

Connect the PC-1500 to a CE-150 or CE-162 audio cassette interface and plug the audio
jack wire.

After, enter a CLOAD M command and start to play the WAV file. After 9 minutes,
MACBAS2014 is loaded. See 1.4/ to start MACBAS2014.

• When loading the full WAV image, MACBAS"14:KkFccc is displayed where k is 1
or 2 depending of the keyboard layout and ccc is the module: 151 155 159 or
161.

• When loading the reduced WAV image, MACBAS"14:Kkrccc is displayed where k
is 1 or 2 depending of the keyboard layout and ccc is the module: 151 155 159
or 161.

1.3/ Serial download

Connect the PC-1500 to a CE-158 interface and plug the serial wire between the host
computer and the interface.

On host, configure the serial line parameters with 2400 bauds, 8 bits, No parity and 1-bit
stop: 2400/8/N/1.

Switch the CE-158 interface ON and after the PC-1500. Configure the serial parameters and
set the device in input mode:

SETCOM 2400,8,N,1
SETDEV CI
OUTSTAT 0
CLOAD M

Start the transfer on the host PC. After less than 1 minute, MACBAS2014 is loaded. See 1.4/
to start MACBAS2014.

1.4/ Initialization

Depending of the images you have loaded, the following steps need to be done to initialize
MACBAS2014, but the reduced and full images share the same initializations steps.

CE-151:
POKE &785B,&4F,&FD
POKE &79D1,&28
POKE &79D4,&55

CE-155:
POKE &785B,&47,&FD
POKE &79D1,&24
POKE &79D4,&55

CE-159:
POKE &785B,&2F,&FD
POKE &79D1,&18
POKE &79D4,&55

CE-161 and CE-163:
POKE &785B,&0F,&FD
POKE &79D1,&08
POKE &79D4,&55

Type the POKE’s addresses and values very carefully, because a mistake may crash the
PC-1500 and the whole memory may be corrupted or lost !

Once done, just do DEF+OFF :
• if the computer switch OFF, the keyboard is not installed or is not working (ROM

A01, see warning at 1/),
• if the computer resets (see NEW0? :CHECK), the check sum is not correct, so the

loaded image is corrupted,
• else:

Welcome to MACBAS2014 !

2/ Symbolic macro-assembler

MACBAS2014 is a symbolic macro-assembler. It is able to assemble a complete source in
from a BASIC program or to assemble directly the mnemonics from the command line.

When called from keyboard input, MACBAS2014 will assemble directly and display the
code.

Be careful to initialize first the assembler pointers, else MACBAS2014 will work at a
unknown address.

To do so, switch to PRO mode, type an address followed by DEF+(up-arrow). If you
assemble a BASIC program, the assembler pointers are initialized by the asm directive (see
2.2/).

Because the mnemonics are in lowercase, be sure to follow the case hereafter.

For example, switch to PRO mode, do CLEAR, enter the following address &7900 and do
DEF+(up arrow). You will see:

7900:sbc c
The current instruction at &7900 (i.e &00) is disassembled.
Now, type nop ENTER and you see:

7900:nop
This is the command or the immediate mode. Note that it is not possible to enter assembly in
RUN mode (MASBAS2014 will raise an ERROR 101).

Enter the following program:
10 asm &7900,&790F,&7910,&791F
20 call &E669:ret
30 end

Now switch to RUN mode and do RUN. When the > is back, the program is assembled. Try a
CALL &7900 and you ear a beep.
Switch back to RUN mode and do DEF+(down arrow) and you see:

7900:call &e669
Press (down arrow), and

7903:ret
will be displayed. Press (up arrow) will return to the &7900.

Now, modify the program as follow:
10 asm &7900,&790F,&7910,&791F
15 defs "BEEP1"=&E669
20 call "BEEP1":ret
30 end

Now switch to RUN mode and do RUN. When the > is back, the program is assembled. Try a
CALL &7900 and you ear a beep. But you have defined the symbol "BEEP1" with the
value &E669. Do SMBL LIST and you see:

BEEP1 &E669
Press (down arrow) to continue or CL to exit.
Switch back to RUN mode and do DEF+<down arrow> and you see:

7900:call "BEEP1"
Now, switch back to PRO mode and do "BEEP1" DEF+(up arrow) and you discover:

E669="BEEP1":ld l,&08
You are inside the ROM routine BEEP1 at the address &E669. In a same way, you may also
call the routine by a CALL GETS "BEEP1" !

The full images comes with the sourcer command SRCS. This will convert an assembly code
into a BASIC source. For example, the following will source the the routine &ED95 (convert
the hexadecimal string into a 16-bits number). To do so, switch to PRO mode and do:

NEW
SRCS &ED95,&EDAA

After a couple of seconds, the following BASIC source code is available:
push hl
ldi (bc)
call &ED7D
jr nc,"L001"
swp
sta h
ldi (bc)
call &ED7D
jr nc,"L001"
rcf
adc h
scf
"L001":pop hl
ret

2.1/ Mnemonics

The following mnemonics are understood by MACBAS2014:

adc[#] (R)
adc rl
adc rh
adc[#] (&mn)
adc &n
add R
add[#] (R),&n
add[#] (&mn),&n
and[#] (R),&n
and[#] (R)
and[#] (&mn),&n
and[#] (&mn)
and &n
atp
am0
am1
bit[#] (R),&n
bit[#] (R)
bit[#] (&mn),&n
bit[#] (&mn)
bit &n
call &mn
cdv
cpa[#] (R)
cpa rl
cpa rh
cpa[#] (&mn)
cpa &n
cpi
cp rl,&n
cp rh,&n
dadc[#] (R)
dec A
dec rl
dec rh
dec R
di
djc &d
dsbc[#] (R)
ei
halt
inc A
inc rl
inc rh
inc R
ita
jr cc,&d
jr &d
jp &mn
lda[#] (R)
lda rl
lda rh

ldi[#] (R)
ldi
ld rl,&n
ld rh,&n
ld BC,R
ld BC,PC
ld BC,SP
ld R,BC
ld SP,BC
ld PC,BC
ld SP,&mn
nop
or[#] (R),&n
or[#] (R)
or[#] (&mn),&n
or[#] (&mn)
or &n
off
pop A
pop R
push A
push R
rcf
rdp
ret
reti
rl
rr
rld
rrd
rpu
rpv
sbc[#] (R)
sbc rl
sbc rh
sbc[#] (&mn)
sbc &n
sbr (&n)
sbr cc,(&n)
scf
sdp
sl
sr
spu
spv
sta[#] (R)
sta rl
sta rh
sta F
sta[#] (&mn)
std[#] (R)
sti[#] (R)

lda F
lda[#] (&mn)
lda &n
ldd[#] (R)

swp
xor[#] (R)
xor[#] (&mn)
xor &n

The syntax of all sbr subroutines is also supported by MACBAS2014.

sbr (&00),&n,&n’,&d
sbr (&02),&n,&n’,&d
sbr (&04),&d
sbr (&08),&d
sbr (&0E),&n,&d
sbr (&10),&n
sbr (&1A),&d
sbr (&1C),&n
sbr (&26),&d
sbr (&28),&d
sbr (&2A),&n,&n’
sbr (&2C),&d
sbr (&2E),&d
sbr (&34),&n,&n’,&d’,...,&n,&d

sbr (&C2),&k,&d
sbr (&C4),&k,&d
sbr (&C8),&d
sbr (&CA),&n
sbr (&CC),&n
sbr (&CE),&n,d
sbr (&D0),&n,d
sbr (&D2),&d,n
sbr (&D4),&n
sbr (&D6),&n
sbr (&DE),&d
sbr (&F4),&mn
sbr (&F6),&mn

Note: The sbr calls not listed above do not take arguments.

Some instructions are specific to MACBAS2014:
ld BC,&mn Assembled as ld C,&n:ld B,&m
ld DE,&mn Assembled as ld E,&n:ld D,&m
ld HL,&mn Assembled as ld L,&n:ld H,&m

The conditions <= and > are supported:
jr <=,&d Assembled as jr Z,&d:jr NC,&d
jr >,&d Assembled as jr Z,+2:jr C,&d

Convention for the mnemonics described above:
&n Byte 8-bits value, within 0..255 (&FF)
&mn Word 16-bits value, within 0..65535 (&FF)
(&n) Indirect 8-bits value, within 0..255 (&FF)
(&mn) Indirect 16-bits value, within 0..65535 (&FFFF)
cc Condition: C, NC, V, NV, Z, NZ, V, NV, ==, !=, <, >=
&d 8-bits displacement, within 0..255
rh High 8-bits register: B, D, H
rl Low 8-bits register: C, E, L
R Whole 16-bits register: BC, DE, HL
(R) Indirect whole 16-bits register: (BC), (DE), (HL)
A Accumulator
F Flags (status)
PC Program counter
SP Stack pointer
[#] Optional second page access
&k BASIC keyword code if k >= &E000 else a 8-bit value is assumed

Note: The undocumented register MN is not supported.
Note: Conditions and registers may be entered in both uppercase or lowercase.

The values &n, &mn, &d or &k may be any expressions of the BASIC evaluator.
lda PEEK (&764E) AND 3:jr "loop":call PEEK (&785B)*256+PEEK (&785C)

The mnemonics and the commands byte, word and text are callable directly from
keyboard in PRO mode (command or immediate mode). The mnemonics are assembled in
PRO mode or execute a RUN in RUN mode to starts the assembler, if a asm ... end
block is present in the BASIC program. When the assembler is working from a BASIC
program, more functionalities, like define symbols or the structured programmation, are
available.

The registers A,B,C,D,E,H,L,F,BC,DE,HL,PC,SP,(BC),(DE),(HL) are different from the
corresponding BASIC variables. If you want to use the value of BASIC variable instead of a
register, you may do it by writing 0+RRR to avoid an incorrect instruction.

For example:
A=10
lda A

will be rejected by the assembler. Do instead:
lda 0+A

2.2/ Assembler directives

Note that these directives are only usable while running the assembler inside a BASIC
program and should be entered in PRO mode.

asm <start-code>,<end-code>[,[<start-symb>,<end-symb>]
[,<store-code>]
Activate the assembler. Instructions after this directives will be assembled. If some
arguments are not specified, the previous values are used.
The assembler will write the assembled code starting <start-code> and until
<end-code> is reached. Code can not be written outside the code area.
If symbols need to be defined, the symbol area is between <start-symb> and
<end-symb>.
The <store-code> is address at which the code will be stored. This gives the
possibility to assemble a code for another place; for example, a code running at the
place of MACBAS2014.

asm CONT
Activate the assembler reusing the previously fixed addresses. This provided to add
code and symbols.

end
Finish the assembler. When running a program, instructions outside the block
asm .. end will raise an error.

defs "symbol-name"[=&mn]
Defines a symbols named "symbol-name" to the given value &mn. If no value is
specified the current assembler address (i.e THIS) is taken.

2.3/ Assembler variables

THIS Function returns the current assembler address.

PASS Function returns the current pass of the assembler, i.e, 1 for the first pass, 2 for the
second, 0 if the assembler is not active. This is very useful to write a source with
actions performed only in pass 1 or 2.

2.4/ Assembler data

byte &n|*&mn[,&n|*&mn[,...]]
Store 8-bits values. If *&mn is given, compute the displacement between the current
address of the byte and the given address &mn.

word &mn[,&mn[,....]]
Store 16-bits values.

text "<text>"[,"<text>"[,...]]
Store text strings

2.5/ Values

HEX$ &mn
Returns the hexa-string of the &mn 16-bits value.

HIGH &mn
Returns the high 8-bits value of the &mn 16-bits value.

LOW &mn
Returns the low 8-bits value of the &mn 16-bits value.

2.6/ Structured code

The following instructions are designed to write structured code, and also to economize
symbols. The condition cc is working on the status register F, as performed by JR cc.

Note that these instructions are only usable while running the assembler inside a BASIC
program and should be entered in PRO mode.

if [#]cc <TRUE-code> [else <FALSE-code>] endif
Execute <TRUE-code> if the condition cc is TRUE, if not, execute <FLASE-
code>. Note that the <FALSE-code> section may be omitted.

begin <LOOP-code> until [#]cc|djc
Execute <LOOP-code> until the condition cc is TRUE.

begin <CONDITION-code> while [#]cc <LOOP-code> repeat
Execute <CONDITION-code> and while the condition cc is TRUE, execute
<LOOP-code>.

If # precedes the condition cc, this will inform the assembler that the jump will go over the
255 bytes limit and tell the assembler to use absolute jumps (jp) instead of relatives (jr).

See some examples in the chapter 4/.

2.7/ Symbols

With MACBAS2014, a symbol is a string "<symbol-name>" and a value. All symbols
are 16-bits values. When defining a new symbol, a name ("<symbol-name>") should be
given, and optionally a 16-bits value. If the value is omitted, the current assembler address
(THIS) is assigned to the symbol.

If a symbol already exists, it is not possible to change its value. Symbols are defined during
the pass 1 of the assembler. The pass 2 generates the code with the good values.

A symbol name may contain any characters in the range &20 to &7F. The minimum length
for a symbol name is 2 characters, and the maximum length is 80 characters.
Note the two exceptions below:

1. Symbol names starting by a space (&20) are not treated as symbols and so may be
used for BASIC or for indentation,

2. Symbol names of only one character are skipped and are so reserved for direct BASIC
call (DEF+<letter>).

The sourcer SRCS creates symbols of the form "Lnnn" where nnn is a 3 digits decimal
number. Avoid to use symbols with these name if you expect to run SRCS.

GETS "symbol-name"
Return the value of the symbol "symbol-name". If the symbol does not exist, -1
is returned.

SMBL ON [&mn]
Active (or re-activate after a SMBL OFF) the symbol table defined before with asm.
If &mn is given, the symbol table starting at &mn is used.

SMBL OFF
Deactivate the symbol table.

SMBL LIST [&mn]
List all symbols on the screen using the working symbol table. Press (down-
arrow) to list the next symbol, and CL or ON/BREAK to exit. If &mn is given, the
symbol table starting at address &mn is used.

2.8/ ML execution

REGS RRR=&mn|RRR TO var[,RRR=&mn|RRR TO <var>[,...]]
Load register RRR with the value &mn or save the register RRR value to the BASIC
variable <var>. RRR is one of the register A, F, BC, DE, HL, PC or SP.

EXEC [TRON] &mn
[,<valSP>][;[<valA>][,[<valBC>][,[<valDE>][,[<valHL>]]]]
[;[<varA>][,[<varBC>][,[<varDE>][,[<varHL>]]]]]]
Launch execution of the ML program at the address &mn, with optionally setting the
stack SP from <valSP>, and optionally storing the given value into A, BC, DE and
HL. from <valA>, <valBC>, <valDE> and <valHL> respectively.
When the execution ends, optionally the values of the registers A, BC, DE and HL may
be saved into the BASIC variables <varA>, <varBC>, <varDE> and <varHL>.
If TRON is given, the execution does not start, but the debugger is activated. When the
debugger is active, pushing ON/BREAK while the execution will break the program,
showing BREAK AT &mn. Also, if the stack goes outside its space, the program will
abort by ERROR AT &mn.
See the Keyboard driver section 3. below for further explanation about the debugger.

EXEC CONT [&mn]
Continue execution after a break. Start at the address &mn if it is specified.

EXEC CONT
Deactivate the ML debugger.

EXEC RUN &mn[;args,....]
Launch execution of the ML program at the address &mn, but the eventual arguments
args,.... may be parsed as any BASIC commands, like POKE. This is useful to
implement new BASIC commands. Note that is not possible to create a function, like
PEEK for example.

bkp
Install a special call instruction to the debugger entry. When LM code is executing,
this call will enter the debugger and stop; this is "Break Point". This is very useful to
debug LM programs. When the debugger is entered, the registers are saved, and it is
possible to execute step-by-step with the embedded debugger (see chapter 3.3).

2.9/ Sourcing code into BASIC program (full images only)

SRCS <start-code>,<end-code>[,<start-data>,<end-data>
[,<start-symb>[,<line-num>[,<increment>]]]]
Build a BASIC program using the ML code from <start-code> to <end-code>
using the symbol table at <start-symb> (or the current working symbol table if
omitted), create a byte or text area from <start-data> to <end-data> if
specified. The first line has the number specified by <line-num> (or 10 if omitted)
and increment each line by <increment> (or 10 if omitted).
When symbols are found into the table, the disassembler will use them.
When making a jump (absolute or relative) without any symbols found, the
disassembler will build a symbol "Lnnn" where nnn is incremented at each new
symbol.

Note that the reduced images do not support the SRCS command.

3/ The keyboard driver

With MACBAS2014 a fully enhanced keyboard driver is provided. There are 3 modes with
this new driver

3.1/ The normal mode

With this new driver, all keys have auto-repetition, also direct or SHIFT or DEF key are
pressed.

In all modes (RUN, PRO, RESERVE), the following key extension are usable:

DEF OFF Compute the check sum of MACBAS2014 and perform a soft
RESET if code is corrupted,

DEF CL Clear the line from the cursor position to the end of line,
DEF MODE Jumps from : to :,
DEF (left-arrow) Go to the beginning of the line,
DEF (right-arrow)Go to end of the line,
SHIFT INS Activate or deactivate the auto-insertion mode.

3.2/ The mnemonics shortcut

When in PRO or RESERVE mode, a mnemonics shortcut keyboard is redefined. To enter
easier the main mnemonics, press DEF+<key> with the layout shown below:

The both layout are provided, depending of the image loaded.

3.2.1/ Layout 1:

ldd ldi lda ld adc sbc and or xor bit byte word text sr
 Q W E R T Y U I O P 7 8 9 /
std sti sta cp cpi cpa jp jr djc if else endif sl
 A S D F G H J K L 4 5 6 *
 inc dec add call sbr push pop scf rcf begin while repeat rr
 Z X C V B N M () 1 2 3 -
 ret until swp defs rl
 SPACE 0 . = +

3.2.2/ Layout 2:

byte word text if else endif begin while repeat until cp cpi cpa djc
 Q W E R T Y U I O P 7 8 9 /
 adc sbc add and or xor bit inc dec std sti sta jr
 A S D F G H J K L 4 5 6 *
 swp sr sl rr rl scf rcf push pop ldd ldi lda jp
 Z X C V B N M () 1 2 3 -
 defs ld ret call sbr
 SPACE 0 . = +

3.3/ The debugger/monitor keyboard

When in PRO mode, the following key extension are usable:

DEF (up-arrow) Read the address in the input buffer (like AREAD) and start
disassembling at the given address,

DEF (down-arrow) Start disassembling at the last address, or at the start
address of the assembler, ie, <start-code>,

(up-arrow) One instruction, 8 bytes or 16 characters backward,
(down-arrow) One instruction, 8 bytes or 16 characters forward,
(left-arrow) One byte backward,
(right-arrow) One byte forward,
DEF RCL Show the general registers PPPP:BBCC DDEE HHLL AA FF
SHIFT RCL Show the status registers PPPP:SSSS aaaaaaaa hvzic

with aaaaaaaaa the binary representation of the
accumulator A and hvzic the binary representation of the
status register F, lower case if cleared, upper case if set,

DEF MODE Switch between instruction and text display,
SHIFT MODE Switch between instruction and byte display,
SHIFT CA Deactivate the disassembler.

When in RUN mode, after the debugger was activated by EXEC TRON, the following key
extension are available:

(up-arrow) Show the current instruction,
(down-arrow) Execute the current instruction,
DEF (up-arrow) Shows the stack SSSS->xx yy ...(),
DEF (down-arrow) Execute a call as a standalone instruction,
DEF (double-arrow) Execute up to a ret instruction,
DEF (doublea-rrow) Continue execution,
SHIFT CA Deactivate the debugger.

4/ Examples

In this chapter, we assume that a MACBAS2014 image for a CE-161 has be loaded.

First we will reserve some space from &2000 to &2200 for ML code and symbols. In PRO
mode, just do:

NEW &2200

Type the following code (note that the indentation is here only to have a pretty view):
10 asm &2000,&20FF,&2100,&21FF
20 "STRLOWER"dec l
30 if C
40 begin
41 lda (bc)
42 cpa ASC("A"):jr nc,"NUPPER"
43 cpa ASC("Z")+1:jr c,"NUPPER"
44 or ASC("a")-ASC("A"):sta (bc)
45 "NUPPER"inc bc
46 until djc
50 endif
60 scf: ret
70 end
80 END

Return to RUN mode and launch RUN, and wait for 3 seconds. The code will be assembled.

In PRO mode, doing DEF (down-arrow) will show:
2000="STRLOWER":dec l

Use (down-arrow) to see the next instruction:
2001:jr nc,&2012

Now execute it (A$ is at address &78C0 and the string has 16 characters).
A$="TH!S 1s -MaCBaS-"
EXEC &2000;,&78C0,,16
A$

and you will show:
th!s 1s -macbas-

Now switch to RUN mode, and do
A$="HeLLo WoRLD!"

We will execute it step by step by doing:
EXEC TRON &2000;,&78C0,,12

You see:
2000="STRLOWER":dec l

Pressing the (down-arrow) key will execute the pointed instruction.
2001:jr nc,&2012
2003:lda (bc)
2004:cpa &41

Pressing DEF+RCL will commute to REGISTER display. You see:
2004:78C0 78C0 000B 48 13

Registers are shown as: PCPC:BBCC DDEE HHLL AA FF
Pressing Shift+RCL will commute STATUS REGISTER display. You see:

2004:7BAF 01001000 HvzIC
Registers are shown as PCPC:SPSP aaaaaaaa fffff where aaaaaaaaa is the binary
representation of the accumulator A and fffff are the flags (uppercase if set, lowercase if
cleared).
Pressing DEF+RCL go back to instruction display.

2004:cpa &41
2006:jr nc,"NUPPER"
2008:cpa &5B
200A:jr c,"NUPPER"
200C:or &20
200E:sta (bc)

Press DEF+RCL, you see that A is now 68 (i.e "h"). Continue the program by pressing
(down-arrow) until you reach:

2012:scf
2013:ret

If you execute the ret, you get ERROR AT &2013. This is because when executing a ML
program step-by-step, no return address is pushed on the stack, but the debugger “knows”
that the ret goes nowhere and raises an error.
Now do A$ and you see:

hello world!

Also, it is possible to execute step-by-step by displaying the registers instead of the
instructions:

A$="Z"
EXEC TRON &2000;,&78C0,,1

You see:
2000="STRLOWER":dec l

Do DEF+RCL and execute the program by pressing (down-arrow) and you will see:
2000:78C0 78C0 0001 21 13
2001:78C0 78C0 0000 21 17
2003:78C0 78C0 0000 21 17
2004:78C0 78C0 0000 5A 13
2006:78C0 78C0 0000 5A 13
2008:78C0 78C0 0000 5A 13
200A:78C0 78C0 0000 5A 02
200C:78C0 78C0 0000 5A 02
200E:78C0 78C0 0000 7A 02
200F:78C0 78C0 0000 7A 02
2010:78C1 78C0 0000 7A 02
2012:78C1 78C0 00FF 7A 02
2013:78C1 78C0 00FF 7A 03
ERROR AT &2013

Now display A$ and see:
z

The registers values may be also fixed by the command REGS. Now we use the variable D$
(address &78F0). In RUN mode, do

Shift+CA
REGS BC=&78F0,HL=6
D$="MACBAS"
EXEC &2000

When returning to the BASIC prompt, D$ will show:
macbas

If you press the DEF+RCL, you will also see:
4000:78F6 78C0 00FF 73 05

No switch in PRO mode and do
&78F0 (up-arrow)

and you will see:
78F0:bit (hl),&61

Pressing Shift+MODE enters the BYTE mode:
78F0:6D61636261730000

And finally DEF+MODE enters the TEXT mode:
78F0:"macbas~~~~~~~~~~"

Press Shift+CA to exit from the disassembler

Now, switch to PRO and do NEW to clear the current program, and call the sourcer SRCS:
NEW
SRCS &2000,&2013,,&2100

And now do LIST and use the (down-arrow) to show the ML program sourced:
LIST
10:"STRLOWER":dec l
20:jr nc,"L002"
30:"L001":lda (bc)
40:cpa &41

...etc...
130:ret

Note: This source code is provided in the strupper.bas file. Use the strupper.wav
to load it.

Another example to implement a FOR..STEP..NEXT loop:
10 asm &2020,&20FF
20 lda &21
30 begin
40 cpa &80
50 while <
60 sti (bc)
70 rcf:adc &10
80 repeat
90 scf:ret
100 end

This is the equivalent of the BASIC program:
10 B$="":FOR I=&21 TO &80 STEP &10:B$=B$+CHR$ (I):NEXT I:END

Switch to RUN mode, and launch the program by RUN. Now execute the LM routine. This
program will fill the string pointed by BC with !1AQaq (The variable B$ is located at the
address &78D0).

B$=""
EXEC &2020;,&78D0
B$

Switch in PRO mode, and do:
&2020 DEF (up-arrow)

You see:
2020:lda &21

If you enter directly:
lda &24

You will see now:
2020:lda &24

Rerun the ML program using C$ (located at address &78E0):
C$=""
EXEC &2020;,&78E0
C$

and see $4DTdt

By the way, you can also do:
D$=""
REGS BC=&78F0,A=&26
EXEC &2022
D$

and you see &6FVfv

As third example, switch to PRO mode and do:
NEW
Shift+CA
&7900 (up-arrow)

You see:
7900:sbc c

Enter push HL and when 7900:push hl is displayed, press the (down-arrow).
Enter pop DE and when 7002:pop de is displayed, press the (down-arrow).
Enter ret to terminate.

Now, switch back to RUN mode and do
REGS HL=&8899
EXEC TRON&7900

You see:
7900:push hl

Execute the instruction by pressing (down-arrow), and DEF+(up-arrow) shows:
7BAD->88.99.()

This is the stack pointer and the stack values until the () which is the “end-stack marker”.
So the HL content &8899 is pushed into the stack.
Execute the next instruction by pressing (down-arrow), DEF+(up-arrow) and now you see:

7BAF->()
The stack is empty because DE has been “popped” from the stack. DEF+RCL shows:

7904:bbcc 8899 8899 aa ff

Finally, just press Shift+CA to exit from debugger.

As last example, the source renum.bas will replace the old RENUM command. This is a
simple source code to RENUMBER the BASIC lines inside a program. The GOTO and
GOSUB are not renumbered.

Load the renum.wav image and change the address on the line 10 according to the image
you loaded. Do RUN to assemble the program. In this example, we assume that the
MACBAS2014 image is for CE-161 and that we change the line 10 as follow:

10 asm &2000,&20FF,&2100,&21FF

To execute it, just do
EXEC #&2000

Called without any argument, the first line is 10 and the increment is 10.
Try now to call the renumber routine as follow:

EXEC#&2000;1000,2
In PRO mode, you see:

1000 asm...
1002 IF PASS=1LET N=THIS+100:R=N:E=N:S=N
1004 defs "RENUM":sbr &C8,N

...

Like a symbol "RENUM" is defined, you may also call EXEC #"RENUM";100,1

100 asm &2000,&20FF,&2100,&21FF
110 IF PASS=1LET N=THIS+100:R=N:E=N:S=N
120 defs "RENUM":sbr &C8,N
130 sbr &C6
140 ld h,00:ld l,10:lda l:jr R
150 N=THIS:sbr &C6
160 sbr &DE,E:sbr &D0,&3,E:push hl
170 sbr &C2,ASC",",S
180 sbr &DE,E:sbr &D0,&9,E:pop hl
190 R=THIS:push de:sta e:sbr &CC,&69
200 begin
210 " "lda (bc):inc a
220 while nz
230 " "lda h:sti (bc):lda l:sti (bc)
240 " "ldi (bc):add bc
250 " "lda e:add hl
260 repeat
270 pop de:sbr &E2
280 E=THIS:sbr &E0:S=THIS:sbr &E4
290 end

The code of RENUM (renum.bas) above is also an example of a source code not using any
symbols. Just the BASIC variables are set to remember the jump addresses.

Note that the symbols " " in lines 210, 230, 240 and 250 are ignored by the assembler
because they begin by a space. This is just for “prettying” the source code.

In line 100, the check of the PASS=1 is done to initialize some variables N R E and S to
the value of the current assembler address (THIS) added with an offset 100. The fact to
initialize the variables is to avoid a displacement or a value error while assembling. Each
time a jump point has to be set, an instruction var=THIS is written (lines 150 for N, 190
for R, and 280 for E and S). The variable is fixed to current assembler address and the value
is kept, because the initialization of the line 110 is done only one time, when the assembler
pass is 1. The assembler is a “two passes” assembler; this means that the code is “evaluated”
and “assembled” two times, the first with PASS=1 and the second with PASS=2. So at the
“second pass loop”, the test on the line 110 is false and the LET instruction is not executed.
Note that PASS=0 if the assembler is not running, i.e outside a loop asm .. end.

The two passes have the following interests:
• The first pass (PASS=1) evaluates the assembly code, check the syntax, increment

the current assembler address at each instruction and declare the symbols. The values
affected or read are “dummy”. But some syntax or invalid values may be rejected
during this pass.

• The second pass (PASS=2) assembles the instructions, writes the code into memory,
evaluates the symbols and raise error on undefined symbols or out-of-range
expressions or symbols values.

When assembling in immediate or command mode in PRO mode, the assembler is
considered as in pass 2 (PASS=0).

5/ Assembler/debugger/sourcer errors

100 The assembler is already running
101 The assembler is not running
102 Code area and symbol tables overlaps
103 No end found while assembler is running
104 end does not return to asm
105 The code differs between pass 1 and 2
106 Code goes outside its space (<end-code>)
107 Symbols goes outside the table (<end-symb>)
108 Structured macro stack not empty at end
109 Structured macro stack empty or full up
110 Incorrect structured macro stack pop
111 Condition cc expected
112 Incorrect condition cc for sbr or structured macros
113 Relative jump greater the 255 bytes
114 8-bits value expected, 0..255
115 16-bits value expected, 0..65535
116 Incorrect instruction
117 Incorrect instruction in second page &FD
118 EXEC can not return register value in TRON mode
119 SRCS overlaps
120 Unknown symbol
121 Redefined symbol
122 Invalid character in symbol name
123 Symbol value differs between pass 1 and 2

6/ MACBAS2014 BASIC programs and the lhTools

It is possible to write and build BASIC programs containing MACBAS2014 mnemonics
using the lhasm utility from the lhTools. In a same way, when uploading a BASIC program
from MACBAS2014, it is possible to decode properly the mnemonics with lhdump.

The keyword file macbas2014.kyw is provided for a usage with the lhTools utilities.

To decode a BASIC binary from the MACBAS2014, just specify the keyword file with the
option -K <keword file> to lhdump.
For example, lhdump -K macbas2014.kyw strupper.bin will show:

asm &4000,&40FF,&4100,&41FF
"STRLOWER"dec l
if C
begin
lda (bc)
cpa ASC ("A"):jr nc,"NUPPER"
cpa ASC ("Z")+1:jr c,"NUPPER"
or ASC ("a")-ASC ("A"):sta (bc)
"NUPPER"inc bc
until djc
endif
scf :ret
end
END

To build a BASIC program containing MACBAS2014 mnemonics, just add a
.IMPORT: <path to macbas2014>/macbas2014.kyw
< ... BASIC code ... >

You can see the examples of strupper.bas and renum.bas provided.

Note that the lhTools version 0.7.2 or higher are mandatory to build MASBAS2014 from
the sources.

7/ Differences between previous and next release

Yes ! 4 releases of MACBAS exists. The MACBAS 1.0 in 1990/1991 and MACBAS 3.0 in
1999 but never really tested and really not fully mature.

7.1/ MACBAS 1.0 vs MACBAS2014

The register names are X,Y,U,P,S instead of BC,DE,HL,PC,SP. So XH,XL,YH,YL,UH,UL
stands for B,C,D,E,H,L. Why ? This is way SHARP name the LH5801 registers. But, because
MACBAS use z80-like mnemonics, I prefer to use also the z80-like registers.

The debugger is not embedded inside the keyboard driver, but the BASIC command: DBGS
[&mn] which is less useful and integrated.

GETS is DEEK and the others changes are:
#INLINE is asm
#END is end
#DEFINE is defs
#IF is if
#ELSE is else
#ENDIF is endif
#BEGIN is begin
#UNTIL is until
#WHILE is while
#REPEAT is repeat
#BYTE is byte
#WORD is word
#TEXT is text

REGS does not exists.

The assembler works only while running program. It is not possible to assemble in live.

7.2/ MACBAS 3.0 vs MACBAS2014

The register names are the same as in MACBAS 1.0, for the same reason.

RENUM, PRGM LOCK and PRGM UNLOCK no more exist under MACBAS2014.

The keyword BKPT is bkp. It insert a call to the debugger breakpoint entry into the code.
Very useful for debugging.

Some space optimization realized, but not with a real success as I see the number of
regressions. Currently work-in-progress, the patch 1 is on tests, but no so stable and mature to
be diffused.

7.3/ MACBAS95 vs MACBAS2014

Except for the instructions RENUM, LINK and UNLINK which no more exist in
MACBAS2014, the sources code are fully compatible. Because MACBAS2014 search for
registers and conditions in both lower-and-uppercase, it is able to assemble directly source
code from MACBAS95.

Another exception: MACBAS2014 ignore the symbols of only 1-character or beginning by a
space.

7.4/ And why MACBAS2014 ?

Because, it is the more mature and this I prefer: I found better to use single letter for 8-bits
register, and 2 letters for 16-bits, like in Z80 naming. Also, I found the debugger embedded
inside the keyboard very useful and let switch from ML to BASIC.

8/ License

Copyright 1990-1995-2012-2014-2015 Christophe Gottheimer <cgh75015@gmail.com>

MACBAS2014 is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License version 2 as published by the Free Software Foundation.
Note that I am not granting permission to redistribute or modify MACBAS2014 under the
terms of any later version of the General Public License.

This program is distributed in the hope that it will be useful (or at least amusing), but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program (in the file "COPYING"); if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

