
SHARP PC-1500/A & TANDY PC-2

 M M M M PPPPP SSSS
 MM MM MM MM P P S S
 M M M M M M M M P P S
 M M M M M M PPPPP SSSS
 M M M M P S
 M M M M P S S
 M M M M P SSSS

 Mini
 Multi-

 Process
 System

A small and powerful system

version 9-Apr-1998

Christophe GOTTHEIMER

January 1994-January 2014

DISCLAIMER

This software is expected to run exclusively on a SHARP PC-1500 or PC-1500A or a
TANDY PC-2. It will not run on SHARP PC-1600. To use it on an emulator, be sure that the
LH5801 instructions related to the V or MN register are also emulated, else some kernel-jumps
or some utilities may not work correctly and launch a crash.

This software is very complex. It is assumed to be standalone and requires all the memory
provided by CE-161 16Kbytes extension. It is NOT relocatable.

**
I am not responsible for any damages, hardware or/and software, resulting

from the usage of MMPS, its run-time, the standard executable utilities,
and any processes developed later.

You are using this software at your own risk !
**

Be sure to perform a save of your important data before installing and running MMPS.

This software and all utilities are my own creations. MMPS kernel and all utilities are
copyrighted 1994-2014 Christophe Gottheimer.

This code is distributed under the terms of the GNU Public License (GPL) version 2.

Fee free to report bugs, remarks, suggestions, ... to cgh75015@gmail.com

What is MMPS ?

MMPS is a small, but powerful system, which allows dynamic pages allocation, file system
management and multi-processes schedule. It runs on SHARP-PC 1500 computers with
16KB of memory.

MMPS is completely written is assembly language using the monitor-assembler-debugger
XMON(R).

MMPS is standalone and uses only for routines from the BASIC ROM. Even MMPS does not
touch to a BASIC area, it is not compatible with the BASIC programs and variables.

The current directory contains:
COPYING The GNU Public license
README A small text file for impatient ;-)
MMPS.inc MMPS header to develop with the lhTools
MMPS.macro.inc MMPS macros for the kernel
MMPS.volatile.inc MMPS volatile variables and address
mkmmps.sh A script shell to build BIN and WAV
mmps-090498.asm The assembly code of the MMPS kernel
mmps-fs+lib.asm The assembly code of the FS and utilities
mmps-volatile.hex The assembly source code of the MMPS volatile area
mmps-volatile.ds.hex Volatile DS table code
mmps-volatile.heap.hex Volatile HEAP area and table code
mmps-volatile.proc.hex Volatile process, FS tables and kernel stack code
mmps.abw The whole documentation for AbiWord
mmps.pdf The whole documentation in PDF
BDGRD.asm An example of executable
RUNPRO.asm An example of executable
SHOWKEY.asm An example of executable
RTLIB.asm The RUN-TIME Library
STARTER.asm The STARTER executable
FILES.asm The FILES executable
PROCESS.asm The PROCESS executable
DISPLAY.asm The DISPLAY executable
DEBUG.asm The DEBUG executable
MAKER.asm The MAKER executable
Images/stddev/ All images WAV/BIN for the Standard development
Images/stdfull/ All images WAV/BIN for the Standard full
Images/1500Adev/ All images WAV/BIN for the 1500A development
Images/1500Afull/ All images WAV/BIN for the 1500A full
Images/Examples/ All images WAV/BIN of the examples

To rebuild the WAV of MMPS, use the script mkmmps.sh. To process, the lhTools
version 0.4.4 or higher are mandatory, and so the PocketTools.

The current MMPS Kernel is 09Apr.1998

Overview of MMPS

MMPS (Mini Multi-Process System) is a little kernel, which can run several processes, keeps
the user data stored into files, provides some I/O possibilities like Virtual Consoles, IPC
(Inter-Process-Communication), sending-and-receiving messages and events, pages
allocation and release and owner resources.

The MMPS kernel may be split in 3 levels:
1. the page manager
2. the file system
3. the process scheduler

The page manager

It is the lowest level. It is totally independent from the others, but called by them each time
an allocation or release is needed.

It is in charge of the pages allocation and release. Under MMPS, each memory unity is called
'PAGE'. A page has a size of 64 bytes and is always aligned on a 64-bytes frontier. It can
manage up to 127 pages. A set of 1 to N contiguous pages is called 'BLOCK'.

When a allocation is done, the free block may be split into 2 blocks: one allocated and one
kept free. On a same way, when release is done the freed block will be concatenated with the
previous if it is free, with the following if is free. So only one big free block may result of the
coalescence.

The file-system and the user processes ask for blocks. The blocks are owned by the calling
process and keep its ownership until it releases them or it is ended.

In the kernel, the 2 higher levels ask for blocks allocation: the file-system to build the entries
and to reserve the space needed by them; the process-scheduler to creates the stacks, the
arguments pages and the messages transmission.
The kernel is working with physical addresses, and these addresses will be returned to the
caller. No virtual memory access is yet possible (except a similar mechanism with the
SHARED entries).

A process has to take in charge its own memory management and to avoid to access outside
of its space. The kernel has no security against a process which will go out from its space,
neither against a process which want to access to some forbidden or private areas.
If a process tries to access to a non valid address, the kernel will not be warned. But
accessing to the data outside the process space may cause some irrecoverable crashes. If a
process wants to access to an external areas, especially while writing, it has to be sure that no
other processes may access to this area.

The pages allocated to the file-system are kept until it asks to release them. The processes
stacks, messages and blocks are also in the same physical memory. After a lot entry creations,
deletions, pages allocations, messages sent and processes started, it may occur that the
memory map is very fragmented, and that no big blocks (composed by a big set of contiguous
pages) are possible to allocate. In this case, nothing to done except to write a code to
defragment the memory map. There is also no algorithm to allocate the pages, except that the
closest block (in memory pages number) is fetched. When a block preceding and following
two free blocks is released, the three blocks will become one block containing the sum of the
three blocks pages. In this version of MMPS, no memory usage information is available.

The file-system

It is the second level. It is in charge of the entries management and the data storage. All the
entries in the file system are named. The name is a set from 1 to 9 characters. The entries
have also a type; 7 types are recognized by the file-system: the 'FILE', the 'CONSOLE', the
'QUEUE', the 'SHARED' and the 'LOCK'.

• The FILE is a block which contains code, text or data. It is used to store the
executable code of the utilities, the sources, the texts or simply some data.

• The CONSOLE is a logical link to the physical DISPLAY and KEYBOARD of the
computer. Several CONSOLE may be opened at the same time, but only one is active
and linked to the DISPLAY/KEYBOARD device.

• The QUEUE is a channel between several processes; the process which created it is
owner and has the READ access. The others have only the WRITE access. It is used
for asynchronous inter-processes communication.

• The DUPLEX is a connected channel to a peer queue. Writing to a DUPLEX sends
the message to the peer DUPLEX (read). It is an implementation of the PIPE. A
DUPLEX is only possible between 2 processes.

• The SHARED is space in the memory which may be acceded by several processes, to
shared some data. Only the action of READ and WRITE are possible on the
SHARED entries. The shared are equivalent to a memory space with a virtual address
access.

• The MAP is the export of a memory region as a file entry. The access right to the
MAP are set when creating it.

• The LOCK is just a specific entry and may be used by a process to lock a critical
resource.

The file-system allows also access rights control. Like the system does not support the real-
ownership, these rights are just used to avoid some operations on the concerned entry. The
following rights are supported: READ, WRITE and EXECUTE. An EXCLUSIVE open
option is also possible to avoid to share an entry with another process. The CONSOLE and
LOCK are always opened exclusively.
A link counter is also provided to avoid some operations on some case of entry, like deleting
an opened entry.
For the I/O actions, a process needs to get a descriptor on an entry. It is done by 'OPEN'ing
the entry. When it finishes its work, the descriptor has to be 'CLOSE'd. A descriptor is
allocated by the file-system which stores on it some information like the open-mode, the
entry type, the owner, the node-link and some other information depending of the entry-type.
The descriptors owned by a process are closed at the process termination. Opening an entry
will increment its link number and closing will decrement it. To open an entry, the calling
process has to give the 'OPEN MODE', which will define the actions possible. Some actions
are specific to the entry type and some other are common. This is very easy to write a
transparent code, independent of the descriptor type. However, the LOCK and SHARED are
always managed in a separate way.
An extra set of specific actions is also provides for the CONSOLE to manage the I/O.

The file-system can manage up to 32 descriptors (no limitation by type), and up to 64 entries
(also without limitation by type).

When a process wants to create an entry, the file-system will ask to the page-manager to
reserve some pages for it. These pages will be released when the entry will be removed.
Closing some entries like CONSOLE, LOCK, QUEUE or DUPLEX will remove them.
The major constraint is that an entry has always a contiguous set of pages. So, the 'CREATE'
action have to specify the number of pages to reserve for the new entry. The QUEUE,
DUPLEX and the SHARED entries have a limit of 4 pages. The CONSOLE entries have
always 1 page.
The FILE entries may have from 1 to N pages; the number of pages will give the maximum
size that the FILE may have; a real-size is given which indicates the real count of bytes
stored. An action to re size the FILE entries is provided.

The process-scheduler

It is the third and the highest level. It manages the process start, the process time slot
allocation, the inter-process messages and the events control. It can create up to 8 processes,
with priority and father return. When a process starts a new one, it becomes the 'FATHER'
and the started process the 'SON'. A process is an entry in the process table, marked as active
and recognized by the scheduler which will restart it. The scheduler allows some time slots to
the processes; this number of slots given depends of its priority. The priority is a number
from 0 (highest priority) to 15 (lowest priority). The priority of a process is the same as this
of its father, but it can change it. A process of priority 0 will get 16 consecutive slots for its
execution, and only 1 if its priority is 15. All the slots have the same period. The default
priority is 8, so 8 slots.

All the processes started receive an unique number called process-id (PID); this process-id
permits to another process to access to the named process.
The information recorded into the process entry are the process status (PAUSED,
WAITING, ...), its priority, its stack pointer SP, the delay counters (PAUSE and TIME), the
global address, its father process-id (FID) and a link to a FILE entry in the file-system.

When the scheduler starts a new process, it first asks to the file-system to find the named
entry, checks if the type (FILE) and the access rights are good (READ and EXECUTE).
After, it reads the 6 first bytes of the FILE to find some specific information like the
executable signature, the number of pages to allocate for the stack and the global area. The
father gives to its son the in and out descriptors and an address to a page called arguments
page which will be copied into the son process space; the father can pass up to 63 bytes in the
arguments page, the last is always 0. The FILE header contains how many pages should be
asked for the stack and the offset of the global area. When the scheduler will start a process, it
will create its stack. This stack is built in the new process space. This space is allocated and
has the number of pages needed by the process (excluding the arguments page which is
allocated in same block. In fact, the scheduler add 1 to the number of pages), add the offset of
the global area. The global area is the memory area allocated to the process after the top of
the stack.
This space is very important, because its address is passed to the son process at the
beginning. It is used to store some global data which may be used later. The address
GLOBAL - 2 contains always the address of the arguments page. If the space area is
allocated and the in and out descriptors are valid, the son process is created and started. The
father gets as return the process-id of its son.
When its son will terminate, the scheduler will warn the father by using an 'EVENT'. An
EVENT is in fact an action which will ask to the scheduler to send an event message into the
event queue of a process. The receiver process has to poll its event queue to get the oldest
event. A process may enable or disable some events by changing its EVENT mask. On
MMPS, 8 events are supported: 4 are reserved for the scheduler and the 4 others are free for
the other processes.

The 4 events reserved by the scheduler are:
4 The son has returned to scheduler. In this case the value DE of the son is

returned to the father. The scheduler 'PUSH'es a return address into the stack
where the process has to return when it is finished. A simple RET is needed to
return from a process.

5 The son was terminated by an external event.
6 The time alarm is reached.

7 The BREAK key was pressed on the CONSOLE linked to this process. This
event is particular, because if it is not handled, the process will be terminated.
It is a case to raise an event 5 to its father.

The 4 other events (0 to 3) are without specific meaning, and are free for usage. When raising
an event 0 to 3, the DE value of the calling process will be passed to the triggered one.
While polling its event queue, a process will get some information from the kernel, the
number of the event and the process-id of the process which raised it, and eventually the
value of DE from the raising process. A process can raise an event to itself. The event queue
is filled even the process is suspended.

Another feature for process communication provided by the scheduler is the messages. To use
them, a process is the receiver and another the sender. When a process wants to receive some
message, it asks to the scheduler to give to it the state 'READY-TO-RECEIVE' and will be
suspended until a message will be sent. When a process wants to send a message to another, it
asks to scheduler to send it. This is possible only if the target process is ready. A message is a
set of bytes which will be copied from the sender space to the receiver space. The block
needed is allocated by scheduler and returned to the receiver which will be restarted. The
messages mechanism provides tools for synchronous inter-process-communication. A process
can also SEND-and-RECEIVE a message; it can be useful for a message with
acknowledgment. A message is a set from 0 to 255 bytes.

When a process is finished (returned or terminated), all its resources, descriptors and pages
will be released, and its father will be warned. If a process has no more father, the FID will be
set to the value FF. When a father is terminated, its son are still running and are not warned.

The scheduler

The MMPS scheduler will be triggered at each interruption, when a process call the RCH
kernel-jump, or at each kernel-jump entry.

The scheduler is in charge to decide what process is ready to run and so to give the hand to it,
or what process need to sleep according its state.

To run a process should be the next "eligible" process, that is the first process ready in the
scheduler queue. The following status bits set the process sleeping until the "waiting event’
is completed:

READY-TO-RECEIVE : The process is waiting for a message (REC or SNR); It will
be rescheduled when a message is received from another
process (SEN or SNR)

PAUSED : The process is paused for a delay (PAU); It will be
rescheduled when the delay has elapsed

QUEUE-WAITING : Waiting for a message in a queue (WAI); It will be
rescheduled when a message is written in the queue (WRI)

LOCK-WAITING : Waiting for owning a lock (TAK); It will be rescheduled
when the lock becomes given (GIV) is taken by the process

TRACE : Waiting for trace control (DBG); it will be rescheduled
when the debugger leader will request the execution of the
next instruction (TRA)

Each time the scheduler runs a process, it looses one slot. When all slots are consumed, the
process is put at the tail of the scheduler queue. Under MMPS, a kernel-jump consumes one
slot. The number of slots allocated to a process may be changed by the kernel-jump PRI.

The RCH kernel-jump put directly the calling process to the tail of the scheduler queue.

The console task

The console TASK is in charge of the management of the keyboard and the screen devices.

It runs when a process calling a console request, input (REA) or output (WRI). It has the
privilege to run "in place" of the process with its PID.

In MMPS, the time allocated to the console TASK is the sum of all the slots of all process
requesting on a console. It is not a very nice implementation choice, and it may be evolute
later.

The LCD indicators are set or cleared depending of the pending requests:
I : input request
II : output request

The console TASK handles the following keys:
SELECT : Select the next console as active*
OFF : Display while the OFF is pressed the PID of the process owning the

console, the process name and the console name as follow:
P NNNNNNNNN CCCCCCCCC

ON/BREAK : Send an event KIL to the process owning the console, or kill it if the
process do not handle the event

If an output (II is set) request is pending:
RCL : Clear the pending output (II is cleared)

If an input (I is set) request is pending:
left-arrow : Go back one character
right-arrow : Go forward one character
shift-DEL : Go back to begin of the line
shift-INS : Go forward to end of the line
CL : Clear from cursor to the end of the line
shift-CA : Clear all
ENTER : Terminate the input request, all characters in the line are returned

to the calling process
down-arrow : Terminate the input request, all characters from the begin of the

line to the cursor are returned to the calling process
up-arrow : Return end-of-file error (CARRY is cleared and &D3 is returned

into CPU register A)

Note* : The ‘SELECT’ key is the ‘double up-down arrow’ key on the left of the RCL key.

Installing and starting MMPS

Before to install MMPS, be sure to have saved your important programs or data, because
MMPS requires a large amount memory. See the last chapter for the initialization and
discussion about the different MMPS images provided.

After, a load from the tape using CLOAD M is first needed. This is done in 3 steps:
1. the MMPS kernel (see 'MMPS 9/04/1998')
2. the run time and the utilities within the minimum file system (see 'MMPS FS+LIB')
3. the initialization volatile area (see 'MMPS VOLATILE')

When the system loaded into the memory, it may be called directly by the BASIC instruction
CALL &C5 under the editor or a program.

The file-system and the volatile data are kept when exiting MMPS. To start MMPS again,
just do CALL &C5 under the BASIC editor, or in a program.

When starting, the system will first perform a 'DOWN'; it means that it will terminate all the
processes, close all the descriptors and release all the blocks and pages not reserved for the
file system.
After it will create a CONSOLE entry named 'CONSOLE', put it as the active one and try to
start the process 'STARTER' on this console.
If one of these actions failed, the kernel will provoke a computer soft reset and give the hand
back to the BASIC. The message 'NEW0? :CHECK' will be displayed. In this case, a trace-
back is written in binary into the variable BASIC E$ (at address &7650). The binary data
should be retrieved using the PEEK function or under a monitor. The E$ content is the
following:

FF AA BB CC DD EE HH LL PCPC SPSP

If all has worked, STARTER will display the MMPS banner (see 'MMPS 09Apr.1998') and
be waiting for a command. To clear a message pending on a CONSOLE, use the 'RCL' key.
STARTER assumes that all the commands given are the name of a process to start followed
by its arguments. If the process is started, STARTER will display '>N' where N is PID of the
process. If the process can not be launched correctly, STARTER will display '!EE' where EE
is error code returned by MMPS.
When a new process starts, STARTER activates and selects the console to it. To change the
active console, use the 'DOUBLE-ARROW' key located on the left of 'RCL'.
When a process is normally finished, STARTER catches the event and displays '>N
+4:RRRR' with N the PID of the ended process and RRRR the returned value.
When a process is killed, STARTER catches the event and display '>N -5' with N the PID of
the ended process.
Another STARTER process may be started. It is finished by pressing the 'UP-ARROW' key. In
this case, the process just returns to the scheduler except if STARTER has the PID 0 (that
means that it is the son of the kernel) and in this case it will down the system. When the
system is 'DOWN'ing, it will terminated all the processes, close all the descriptors and release
all the pages. After, it will restore the BASIC stack and give it back the control. It is not
possible to start more than one process neither to start another process STARTER at the
'BOOT' time (except by writing another process and give to it the name 'STARTER').

Using MMPS

All the processes may ask to MMPS to do a specific action, like allocate some pages, create
an entry, read, write, start a process.

A process dialogs with the kernel through a 'KERNEL JUMP'. On MMPS, a set of 62 kernel
jumps is provided.

When a process wants to do a kernel-jump, it has first to fill the 8-bits registers B, C, D, E, H,
L or 16-bits BC, DE, HL or mixing the both types with the arguments required by the kernel-
jump (some kernel-jumps do not need argument), and after to 'JUMP' to the kernel with
instructions 'LDA kernel_jump_number; SBR &E3'. When the 'JUMP' will return to
the process, the kernel executed the request or returned an error if something went wrong.
The process is suspended during the kernel-jump and restarted when it is finished.

All the kernel-jump use the same convention: at the return, some registers may be modified if
the kernel-jump has to send back some values to the caller process. For all kernel-jumps, two
cases may occur:

• The kernel-jump went good, the eventual values are returned into the registers and the
CARRY flag (C) is set (SCF). The register A contents the kernel-jump-number. The
others registers BC, DE and HL may be modified depending of the kernel-jump.

• The kernel-jump did not go good, the CARRY flag is clear (RCF) and an error code
is returned into A. In this case, no registers except A are modified.

A kernel-jump is always executed in one time, not-preemptive and not-interruptible. A
kernel-jump is always finished before to restart a process. The kernel-jumps are executed
sequentially and by the kernel itself which takes the PID of the calling process.

A kernel-jump begins and ends by a process rescheduling. When a process asks for a very
short kernel-jump like getting its PID, it looses one slot, the same as a process which asks for
a long one like starting a process. This is not very equitable for the process, the very short or
long kernel-jumps are very rare and with an almost equal ratio.

Here after is the list of all the kernel-jumps supported:
BAL - Allocate a block
BCH - Check block validity
BFR - Release a block
BRE - Change the size of a block
FSR - Read the file-system
FEN - Get status of a file-system entry
TMP - Create a unique temporary entry name
LOK - Create and open a LOCK entry
CON - Create and open a CONSOLE entry
FIL - Create and open a FILE entry
QUE - Create and open a QUEUE entry
DPX - Create and open a DUPLEX entry
SHR - Create and open a SHARED entry
MAP - Create and open a MAP entry
DEL - Delete an entry from the file-system
ACS - Change the access rights of an entry

RNM - Rename an entry
SIZ - Re size a ENTRY entry
DSN - Get entry name from an opened descriptor
DES - Get entry type from an opened descriptor
OPN - Open an entry and get a descriptor
CLO - Close a descriptor
REA - Read a buffer from a descriptor
WRI - Write a buffer to a descriptor
TEL - Get the current position of a descriptor
SEK - Set the current position of a descriptor
WAI - Suspensive wait from a descriptor
CNT - Connect a DUPLEX to a peer DUPLEX
GET - Get data from a SHARED/MAP entry
PUT - Put data to a SHARED/MAP entry
GIV - Give a LOCK
TAK - Take a LOCK
SCN - Set a CONSOLE descriptor active
FLU - Flush a CONSOLE output
RFR - Refresh a CONSOLE output
EDI - Start an editable REA from a CONSOLE descriptor
HDR - Build a executable header
GBL - Get the global area address
PID - Get the PID of the calling process
FID - Get the father PID (FID) of the calling process
XEQ - Execute a new process
END - Terminate a process
PRI - Change the priority of a process
STA - Get the status information of a process
PAU - Pause the calling process for a delay
EVT - Create the event queue to receive the asynchronous events
KIL - Destroy the event queue
MSK - Set the events mask
POL - Poll the event queue and get the oldest event if some are present
RAI - Raise an event to a process
TIM - Initialize a TIME delay
ABT - Abort the TIME delay
SEN - Send a message to a process
SNR - Send and receive a message to/from a process
REC - Receive a message from a process
DBG - Execute in debug mode a new process
TRA - Trace the next instruction of a debugged process
REG - Get the registers of a debugged process
COD - Get code of a debugged process
DAT - Get data of a debugged process
RCH - Reschedule
DWN - Shutdown the system

Constraints and limitations

MMPS is a small system and comes with some constraints and limitations.
Some of them are due to the use of some routines coming from the BASIC ROM. The others
result from the choices made to represent the tables and the internal kernel data. This choices
were always made in a way to 'OPTIMIZE' the accesses to these data and also the space to
store them.

MMPS was developed on a SHARP PC-1500 computer with 16KB of memory.

The specifications asked to keep free 8KBytes for the working area. The kernel-code having
to be less the 8KBytes. It had also to be compatible with the BASIC, and for that never use
the BASIC variables (except the trace-back into E$ in case of boot problem) for its work.

So the memory 'MAPPING' was the following:

All images:
&0000-&00C4 Area for the RESERVE mode.
&00C5-&17FF MMPS kernel code
&1800-&1FFF Run-Time and utilities (STARTER, ...)

Standard Development (Heap 1536 bytes, 24 pages, 32 descriptors):
&4000-&41FF MMPS private volatile data
&4200-&47FF MMPS heap area (process, file-system...)

Standard Full (Heap 8128 bytes, 127 pages, 42 descriptors):
&2000-&3FFF MMPS heap area (process, file-system...)
&4000-&42FF MMPS private volatile data

1500A Development (Heap 4096 bytes 64 pages, 42 descriptors):
&4000-&4FFF MMPS heap area (process, file-system...)
&7D00-&7FFF MMPS private volatile data

1500A Full (Heap 8128 bytes, 127 pages, 42 descriptors):
&2000-&3FFF MMPS heap area (process, file-system...)
&7D00-&7FFF MMPS private volatile data

Constraints

The highest constraint is that when a process wants to create a FILE, QUEUE or SHARED
entry, it has to know the maximal number of pages that the entry will need. Even it is possible
to re size an entry, it is just possible to decrease the number of pages reserved and not to
increase it. With this architecture, all the FILE, QUEUE and SHARED entries are
contiguous. It is a great advantage for the processes, because the executable-code is not
loaded when it is started, but executed directly from the FILE area. It also permits to avoid to
the file-system to have to manage a indirect block allocation to store the data, and give a very
fast response time. But this representation obliges to write a complete relocatable code and
data access, because a process can never know at what address it will be executed, and where
its data will be allocated. In this way, the code has to be fully re-entrant.

Another constraint is that MMPS does not support a virtual addressing mode. It is working
with the physical addresses and does not have any security against a process which goes out
from it space or accesses to a another process's memory area. The programmer has to take in
charge the management of the memory mapping for his process.

**** WARNING ****
A process which will write to another areas than these allocated to it may cause some

irrecoverable crashes, because it has modified some stacks or some data in
the kernel private area. After a crash, the best way is to reload the kernel from the tape
and the others files from the backups, because a non-controlled write may change also

some instructions in a code.

Limitations

There are some limitation under MMPS. These are:
• 127 pages of 64 bytes are available, so 8128 bytes.
• The file-system can manage up to 16 pages, be a 64 entries (no limitation by entry

type). A set of 42 descriptors is available. It permits to open up to 42 entries (no
limitation of descriptors per process).

• The QUEUE and SHARED entries may have a maximum of 4 pages allocated.
• In the MMPS file-system, the entries names are limited to 9 characters. No directory

tree is supported.
• The process-scheduler can start up to 8 processes at the same time.

A standard development version is limited to 24 pages and 32 descriptors. This is due to let a
large space available for the development tools (XMON) and for the work-in-progress.
For the PC-1500A, the 1500A development version is limited to 64 pages.

Known bugs

At this time, a real bug exists: if the auto-power-off timeout is elapsed under the EDI or REA
kernel-jumps (waiting on a console), MMPS will be frozen when powering on, because the
scheduler is not restarted. So, press very fast the RESET button on the reverse side of the
PC-1500/PC-2.
There is no way to bypass this problem. So be careful.

When running a process under debugger, the son process termination does not wake-up the
debugger leader. Use the ON/BREAK key in the debugger console to kill DEBUG.

Terms on MMPS

On MMPS, some terms are used to indicate some entity. Here after is an alphabetic list and
the explanation about these terms.

BLOCK A block is a set from 1 to N contiguous pages. Like it is composed of
pages, it is always aligned on a 64-bytes frontier. A block is owned by
a process (or free). When a process asks for N pages to allocated, the
kernel will create a block.

CONSOLE A console is an entry-type in the file-system which represent a logical
link between a buffer (1 page) and the physical DISPLAY-
KEYBORAD device of the computer. On MMPS, the DISPLAY and
the KEYBOARD may not be dissociated. A mechanism of virtual
consoles allow several processes to shared the physical device; but
only one process is really attached to it at one time: in this case, its
console it said ACTIVE.

DESCRIPTOR A descriptor is a 'LINK' between a process and an entry. When a
process opens an entry, the file-system will return it an unique number,
called descriptor; the link process-entry is created. All the actions to do
(I/O, ...) will be done through this descriptor. The link is remove when
the process will close the entry.

DUPLEX A duplex is an entry-type in the file-system which allows two
processes to communicate in a connected way. Writing to a DUPLEX
will give data available on the remote side. If a process closes a
DUPLEX, the peer will be warned. A queue is like a tube where some
data will go from a point (write) to another (read). The read is done
sequentially in the writing order; First-In, First-Out (FIFO).

ENTRY An entry in the file-system is a record of information (16 bytes) which
permits to a process to allow some pages to store some data. This area
is named (9 characters) and has a type. It permits, when a process
opens an entry, to define the set of actions possible on this entry.

EVENT An event is an asynchronous information (like a signal) send to a
process to warn it about a special action. There are 8 events on MMPS.
Some events (4, 5, 6 and 7) are reserved to kernel for warning a
process about some performed and completed actions. The others (0, 1,
2 and 3) are free and may be used by the others processes. The events
may be accepted or not by a process by enabling or disabling the
EVENT-MASK.

FID A FID (father process-id) is the PID of the process which created the
calling process.All the processes have a FID. When a process creates a
new one, it becomes the father and the started process will be the son.
If a father is finished, all its sons will get the FID at &FF. The process
created by the kernel get the FID &AA.

FILE A file is an entry-type in the file-system. It is composed of a block (1
to N pages) where a process can store (write) or get (read) some data.
A file which contains an executable-code may be started as a process.
A file may contains every-types of data (instructions, binary-data,
ASCII-data) and is always accessible.

FILE-SYSTEM The file-system is the name of a part of the kernel which is in charge of
the entries management, the I/O, and the descriptors.

GLOBAL The global address is the base-address of the area allocated to a
process after the top of the stack.

KERNEL The MMPS operating-system itself. it is split into three parts: the page
manager, the file-system and the scheduler.

KERNEL-JUMP When a process wants to use the features provided by the system, like
create an entry, start a son process, allocate a block, it should do it
through the kernel. For that, it jumps into the kernel critical
procedures: these are the kernel-jumps. A kernel-jump is the entry
point of specific part of code. There are 62 kernel-jumps under MMPS.

LOCK A lock is an entry in the file-system used to lock a resource. No I/O
actions are possible on it.

MAP The map is an entry in the file-system used to export a memory block
as a file. The foreign processes have right to read and/or write to the
map using the standard kernel-jumps, but the owning process may
continue to access the memory directly.

MESSAGE A message is a set of bytes copied from the sender space to the
receiver space. A message transmission should be synchronized
between the two processes. The receiver should be ready-to-receive
when the sender wants to send. The messages are used for a
synchronous inter-process communication.

PAGE A page is the unity used to represent the memory in the kernel. It is a
set of 64 contiguous bytes aligned on a 64-bytes frontier. A page is free
or allocated to a process.

PID A PID (process-id) is an unique number from 0 to 7 which permits to
access to a process.

PROCESS A process is a executable-code (instruction) and a data area (stack,
arguments page...). It is known by the process-scheduler which will
allow some execution slots to run. When starting, a process receive an
unique number called process-id (PID). All the reference to a process
is done with its PID.

QUEUE A queue is an entry-type in the file-system which allows two or several
processes to communicate. On process has the read access and the
other have the write access. A queue is like a tube where some data

will go from a point (write) to another (read). The read is done
sequentially in the writing order; First-In, First-Out (FIFO).

SCHEDULER The scheduler is the part of the kernel which is in charge of the
processes management. It handles the timer interruption, creates the
new processes, restarts the running processes, allows the slots and
perform the messages transmissions.

SHARED A shared is an entry in the file-system which allow several processes to
shared a memory area. These processes may access to the shared with
a mechanism similar to the virtual memory.

SON A son is a process started by another process (its father). A link is kept
between the father and its son: when a process terminates, an event (4
or 5) will be raised to its father to warn it.

Mechanism of the kernel-jumps

On MMPS, the actions executed by the kernel are call kernel-jump.

The system is not a process, but a part of code with an entry point (the kernel-jump) and an
exit.

When a process is doing a kernel-jump, it looses one time slots.

After, it enters into a critical code, not-interruptible, and can access (under some conditions)
to the kernel private area. The kernel-jumps are executed by the processes itself with its PID.
There is one exception for the virtual-consoles. On the SHARP PC-1500, the keyboard is
managed by polling; so, it is not possible to wake-up a process when a key is pressed. Under
MMPS, there is an hidden process to manage to I/O on the consoles. This 'ghost' process is
started each a process is suspended on an console I/O. It has the particularity to run with the
PID of the I/O request owner.

A process enters into a kernel-jump by the 2 assembly instructions:
LDA kernel-jump-number
SBR &E3

where kernel-jump-number defines the action to do.
The arguments passed to a kernel-jump are filled into the 8-bits registers B, C, D, E, H, L, or
the 16-bits BC, DE, HL. When the process exits from the kernel-jump, the following cases
may occur:

• The kernel-jump worked good, the 8-bits and 16-bits registers are modified if they are
used to return some values and the CARRY flag is set (SCF).

• The kernel-jump detected an error, the 8-bits and 16-bits registers are not modified,
the CARRY flag is cleared (RCF) and the register A contains the error-code.

Except DWN, all the kernel-jumps return.

Here after is the description of a kernel-jump:
LD BC,bc-argument ;; load the bc-argument into BC
LD E,e-argument ;; load the e-argument into E
LDA kernel-jump-number;; number of the requested kernel-jump
SBR E3 ;; jump to the kernel
JR NC,error ;; handle the errors

When the SBR &E3 is executed, it will push the registers into the stack, disable the
interruptions, set the kernel-jump bit in the process entry and asks for a rescheduling.

Kernel data structure

Here is described the data structure used by the MMPS kernel. These are the PROCESS-
TABLE, the PAGE-ALLOCATION-TABLE, the DESCRIPTOR-TABLE and the entries of
the FILE-SYSTEM. These structure are given to permit to write some processes to show
information about these structures.

THE PROCESS HAVE TO AVOID TO MODIFY THESE DATA STRUCTURE
BECAUSE IT MAY RESULT AN IRRECOVERABLE CRASH.

Some useful addresses:

&xxFF := The pointer of the current process
&xxFD-&4xxFE := Current process PID internally used inside kernel-jump
&xxFC := Console descriptor currently attached to the CONSOLE task
&xxF6-&xxFB:= CONSOLE task status
&xxF4-&xxF5 := Seed for temporary name (TMP)
&xxF1-&xxA0:= Internal stack for MMPS and CONSOLE task
&xx80-&xx9F := Pointers table to the block of the file system entries

with &xx = &40 for Standard * images, and &7D for 1500A * images.

The PROCESS-TABLE
This table is located at the address &4000 and has a length of 128 bytes for Standard images.
This table is located at the address &7D00 and has a length of 128 bytes for 1500A images. It
is also readable by opening the entry SYSVAR, offset 0x000. It contains 8 items of 16 bytes
which have the following meaning:

byte 0: process status (= &FF ::= free)
bit7 ::= READY-TO-RECEIVE
bit6 ::= PAUSED
bit5 ::= QUEUE/DUPLEX WAITING
bit4 ::= LOCK WAITING
bit3 ::= CONSOLE-INPUT
bit2 ::= CONSOLE-OUTPUT
bit1 ::= TRACED
bit0 ::= KERNEL-JUMP RUNNING

byte 1: priority and slot-counter
bit7-4 ::= priority (0 .. 15)
bit3-0 ::= slot counter

byte 2,3: DELAY counter
byte 4,5: stack pointer SP
byte 6: events mask

bit7 ::= event7
bit0 ::= event0

byte 7,8: event queue address
byte 9,10: TIMER counter
byte 11,12: global address
byte 13: father PID and extended process status

bit7-4 ::= father internal-PID (internal-FID)
&0 ::= pid0

&1 ::= pid1
&2 ::= pid2...
&7 ::= pid7
&A ::= KERNEL
&F ::= no father

bit3 ::= not used
bit2 ::= not used
bit1 ::= TIMER running
bit0 ::= DEBUG RUNNING

byte 14,15: physical address of the process entry

The PAGE-ALLOCATION-TABLE

This table is located at the address &4100 and has a length of 48 bytes (24 pages) for
Standard Development image. This table is located at the address &4100 and has a length of
254 bytes (127 pages) for Standard Full image. This table is located at the address &7F00
and has a length of 128 bytes (64 pages) for 1500A Development image. This table is located
at the address &7F00 and has a length of 254 bytes (127 pages) for 1500A Full image. It is
also readable by opening the entry SYSVAR. offset 0x100 (stddev) or 0x200 (other). It
contains the block items of 2 bytes which have the following meaning:

byte 0: internal PID of the owner
&00 ::= pid0
&10 ::= pid1
&20 ::= pid2...
&70 ::= pid7
&AA ::= KERNEL pid
&FF ::= free

byte 1: number of pages

The DESCRIPTOR-TABLE

This table is located at the address &4140 and has a length of 192 bytes (32 descriptors) for
the Standard Development image. This table is located at the address &4101 and has a length
of 252 bytes (42 descriptors) for the Standard Full image. This table is located at the address
&7E01 and has a length of 252 bytes (42 descriptors) for the 1500A images. It is also
readable by opening the entry SYSVAR. offset 0x140 (stddev) or 0x101 (other). It
contains the descriptors items of 6 bytes which have the following meaning:

byte 0: entry-type and open-mode (= &00 ::= free)
bit7-4: entry-type

0000 ::= LOCK
0001 ::= CONSOLE
0010 ::= FILE
0100 ::= QUEUE or DUPLEX
1000 ::= SHARED or MAP

bit3: descriptor validity
bit2-0: open-mode

100 ::= READ open
010 ::= WRITE open
001 ::= APPEND open (FILE)

 Shared or Duplex bit (SHARED or DUPLEX)
byte 1: descriptor owner internal-PID

&00 ::= pid0
&10 ::= pid1
&20 ::= pid2...
&70 ::= pid7

byte 2,3: physical address of the entry
byte 4,5: offset from the top (FILE)

 connected peer DS (DUPLEX)
 DS chained list (LOCK)

The FILE-SYSTEM entry

The file-system entry is a structure of 16 bytes allocated into the pages reserved for the FILE-
SYSTEM. These pages are dynamically allocated by the file system. Up to 16 pages may be
allocated. The pointers to the node pages are stored at address &4080 to &409F for the
Standard images. The pointers to the node pages are stored at address &7D80 to &7D9F for
the 1500A images. It is also readable by opening the entry SYSVAR. offset 0x080. Each
page contains 4 entries which have the following meaning:

byte 0: entry-type and access-mode (= &00 ::= free)
bit7-4: entry-type

0000 ::= LOCK
0001 ::= CONSOLE
0010 ::= FILE
0100 ::= QUEUE or DUPLEX
1000 ::= SHARED or MAP

bit3: exclusive open (bit set when the entry is open with the
EXCLUSIVE flag; this bit is set for the CONSOLE and
LOCK).

bit2-0: access-mode
100 ::= READ allowed
010 ::= WRITE allowed
001 ::= EXECUTE allowed (FILE); if set, the KERNEL will

permit the run it.)
 Duplex or Map bit (DUPLEX or MAP)

byte 1: link counter (= &00 ::= no link)
(to be deleted or exclusively open, an entry should have a link
counter equal to &00.)

byte 2,3: physical address of the entry-space
 DS owner (LOCK)

byte 4: number of pages reserved for the entry-space
byte 5,6: real-size (FILE)

 head of DS chained list (LOCK)
byte 7-15: entry-name (terminated by &00 if the name is less than 9

characters.)

Executable header

Under MMPS, to be executable, a FILE entry should match some patterns and have an
correct header.
The patterns to match are:

1. To be a FILE entry
2. To have the READ and EXECUTE bits set

The executable header corresponds to the 6 first bytes of the executable file with the
following meaning:

byte 0: executable signature &F3
byte 1,2: real-size (copy of the bytes 5,6 of the entry)
byte 3: number of pages to allocate for the stack and the global

area excluding the arguments-page.
byte 4,5: offset of the global area in the global block.

BAL - Block allocate

Call:
LD L,number-of-pages
LDA 00
SBR E3 ;; kernel jump

Action:
Allocate the number of pages stored into L, and return the physical address of the first
byte into BC. The calling process becomes owner of the allocated pages which are
added to its space. All its pages will be released when the process will be terminated.
A page is a group of 64 bytes always aligned on 64 bytes frontier. A block is a group
of N contiguous pages.

Return:
CARRY if success; BC contains the address of the allocated block.
No CARRY on error, error code into A.

Error Code:
B0 No enough page free

BCH - Block validity check

Call:
LD BC,block-address
LDA 01
SBR E3 ;; kernel jump

Action:
Check if block at the address stored in BC is valid. The block should be owned by the
calling process.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 No owner of this resource

BFR - Block free

Call:
LD BC,block-address
LDA
SBR E3 ;; kernel jump

Action:
Release a block allocated at the address stored in BC. The block should be owned by
the calling process. The complete block is released.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 No owner of this resource

BRE - Block reallocate

Call:
LD BC,block-address
LD L,number-of-pages
LDA 03
SBR E3 ;; kernel jump

Action:
Reallocate (change the number of pages of) the allocated block pointed by BC with
the new size given in L (the new size should be less or equal to the old one) and
release the reminder.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
B2 New size is greater than the old one

FSR - File System entry read

Call:
LD BC,name
LD D,fsds (&FF at first call)
LD HL,entry-struct
LDA 04
SBR E3 ;; kernel jump

Action:
Read the file system entry. At the beginning, the fsds D should be initialized with
&FF. The filesystem entry information are stored into the entry structure pointed by
HL, the name is stored in the name buffer pointed by BC. When no more entry are
read, the error code F1 is returned. The entry structure is described in the FEN kernel
jump.
The output of FSR is the same as FEN.

Return:
CARRY if success; D contains the updated fsds for a next call.
No CARRY on error, error code into A.

Error Code:
F1 No such node

FEN - File system entry

Call:
LD BC,name
LD HL,entry-struct
LDA 05
SBR E3 ;; kernel jump

Action:
Read the node information of a named entry in BC and stores them into the entry structure
pointed by HL. The entry structure contains the following information:

byte 0, bits 7 to 4 Entry type
0000 LOCK entry
0001 CONSOLE entry
0010 FILE entry
0100 QUEUE or DUPLEX entry
1000 SHARED or MAP entry

byte 0, bits 3 to 0 Access rights
1000 Exclusively opened
0100 Read access
0010 Write access
0001 Executable access (FILE)

Duplex or Map bit (DUPLEX or MAP)
byte 1 Number of links
byte 2 Number of pages reserved
byte 3 & 4 Real length

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F1 No such entry

TMP - Create a unique temporary entry name

Call:
LD BC,generic-name
LDA 06
SBR E3 ;; kernel jump

Action:
Create a temporary unique name using the first 3 characters of the buffer pointed by
BC and returns the full name in this buffer, terminated by a &00 byte.

Return:
CARRY and BC is filled with the temporary name.

Error Code:
None.

LOK - Create and open a LOCK entry

Call:
LD BC,name
LDA 07
SBR E3 ;; kernel jump

Action:
Create, if not already done, a LOCK entry named by BC, open it and return the
descriptor in E. When a LOCK descriptor is closed, the LOCK entry is deleted from
the file system. A LOCK is opened with the EXCLUSIVE mode. No page are needed
to create a LOCK entry.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
F0 No entry free
F2 Entry already exists
D0 No DS free

CON - Create and open a CONSOLE entry

Call:
LD BC,name
LDA 08
SBR E3 ;; kernel jump

Action:
Create, if not already done, a CONSOLE entry named by BC, open it and return the
descriptor in E. A CONSOLE is always opened with the modes READ, WRITE and
EXCLUSIVE. When a CONSOLE is opened, it is reset. When a CONSOLE is closed,
it is deleted from the file system. Creating a CONSOLE entry needs one page.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
F0 No entry free
F2 Entry already exists
D0 No DS free

FIL - Create and open a FILE entry

Call:
LD BC,name
LD E,access
LD L,number-of-pages
LDA 09
SBR E3 ;; kernel jump

Action:
Create, if not already done, a FILE entry named by BC, with the access rights given
by E, reserve the number of pages given by L for it, open it and return the descriptor
in E. If not enough page are available to create the FILE entry, an error is returned.
The access rights are given by E; E is an OR of the following:

0100 := READ access
0010 := WRITE access
0001 := EXECUTABLE access

The real length of a FILE entry is set to 0, even the number of pages is reserved. The
length will be set after each WRI to this FILE.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
F0 No entry free
F2 Entry already exists
D0 No DS free

QUE - Create and open a QUEUE entry

Call:
LD BC,name
LD L,number-of-pages
LDA 0A
SBR E3 ;; kernel jump

Action:
Create, if not already done, a QUEUE entry name by BC, reserve the number of pages
given in L for it, open it, and return the descriptor in E. Only the process which
created the QUEUE entry has the READ access. When the QUEUE descriptor with
the READ access is closed, the QUEUE entry is deleted from the file system and all
the descriptors linked to it are invalidated. It is not possible to create a QUEUE with
more than 4 pages. If there is not enough page available, the QUEUE entry is not
created.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
F0 No entry free
F2 Entry already exists
D0 No DS free

DPX - Create and open a DUPLEX entry

Call:
LD BC,name
LD L,number-of-pages
LDA 0B
SBR E3 ;; kernel jump

Action:
Create, if not already done, a DUPLEX entry name by BC, reserve the number of
pages given in L for it, open it, and return the descriptor in E. Writing to a DUPLEX
entry will give data available to the peer DUPLEX. In a same way, to be usable, the
DUPLEX pair should be connected by a call to the CNT kernel-jump. It is not
possible to create a DUPLEX with more than 4 pages. If there is not enough page
available, the DUPLEX entry is not created.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
F0 No entry free
F2 Entry already exists
D0 No DS free

SHR - Create and open a SHARED entry

Call:
LD BC,name
LD L,number-of-pages
LDA 0C
SBR E3 ;; kernel jump

Action:
Create, if not already done, a SHARED entry name by BC, reserve the number of
pages given in L for it, open it, and return the descriptor in E. The SHARED entry has
no owner. When a SHARED descriptor is close, the SHARED entry will remind in
the file system until the link number is 0; at this time, it will be deleted. It is not
possible to create a SHARED entry with more than 4 pages. If not enough page are
available, the SHARED entry is not created and an error is returned.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
F0 No entry free
F2 Entry already exists
D0 No DS free

MAP - Create and open a MAP entry

Call:
LD BC,name
LD E,access-right
LD HL,block-address
LDA 0D
SBR E3 ;; kernel jump

Action:
Create, if not already done, a MAP entry name by BC, fixes the access rights given by
E and set the base address to the block pointed by HL for it, open it, and return the
descriptor in E. The access rights are given by E; E is an OR of the following:

0100 := READ access
0010 := WRITE access

The block should belong in the ownership of the calling process. If the MAP is
closed, all descriptors related to this MAP are invalidated. No page are needed to
create a MAP entry.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
B0 Not enough page free
B1 Not owner
F0 No entry free
F2 Entry already exists
F3 Can not map
D0 No DS free

DEL - Delete an entry

Call:
LD BC,name
LDA 0E
SBR E3 ;; kernel jump

Action:
Delete the entry named by BC from the file system. To be deleted, an entry should be
free (no link) and the WRITE access should be allowed. The pages reserved are
released, and the entry is deleted from the file system. It is not possible to delete an
entry opened or linked to a running process.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F1 No such entry
F3 Entry is busy
F4 Access denied
D1 Exclusively opened

ACS - Change the access right of an entry

Call:
LD BC,name
LD E,access
LDA 0F
SBR E3 ;; kernel jump

Action:
Change the access right of the entry named by BC with the new access given by E; E
is an OR of the following values:

0100 := READ access
0010 := WRITE access
0001 := EXECUTE access (FILE)

If this entry is opened, the descriptors will keep the old rights. The new rights will be
taken at the next open (OPN). The access rights of the LOCK and the CONSOLES
entry have no meaning, because the access rights are set while creating the entry, and
these are exclusively opened. It is not possible to change the access rights if the entry
is exclusively opened.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F1 No such entry
D1 Exclusively opened

RNM - Rename an entry

Call:
LD BC,name
LD DE,new-name
LDA 10
SBR E3 ;; kernel jump

Action:
Rename the entry named by BC with the new name given by DE. The rename is dynamic, all
the processes linked to it will take the new name, because the process table keeps only the
address of the entry. It is not possible to rename an entry with an already existing name or if
the entry is exclusively opened.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F1 No such entry
F2 Entry already exists
D1 Exclusively opened

SIZ - Re-size an FILE entry

Call:
LD BC,name
LD L,number-of-pages
LDA 11
SBR E3,0D

Action:
Re-size the FILE entry named by BC with the new number of pages given in L. To be
re-sized, the WRITE access should be allowed, the new size should be less than the
old one, but greater than the real size and the number of link should be 0. It is not
possible to re size while a descriptor to the FILE entry exists. It is not possible to re-
size a FILE entry with 0 page.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F1 No such entry
F3 Entry is busy
F4 Access denied
F5 Can not re-size

DSN - Get entry name from a opened descriptor

Call:
LD BC,name
LDA 12
SBR E3 ;; kernel jump

Action:
Return the entry name of the descriptor E into BC.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

DES - Get entry type from a opened descriptor

Call:
LD E,descriptor
LDA 13
SBR E3 ;; kernel jump

Action:
Return the entry type (entry type and open mode) of the descriptor E into H. The
following bits are used:

bits7-4 Descriptor type
 0000 := LOCK entry
 0001 := CONSOLE entry
 0010 := FILE entry
 0100 := QUEUE or DUPLEX (bit0 = 1) entry
 1000 := SHARED or MAP (bit0 = 1) entry
bits3-0 Open mode
 1000 := VALIDITY bit
 0100 := READ mode
 0010 := WRITE mode
 0001 := APPEND mode (FILE)
 DUPLEX (bits7-4 = 0100)
 MAP (bits7-4 = 1000)

If the VALIDITY bit (1000) is not set, no operation are possible on this descriptor
except to close it.

Return:
CARRY if success; H contains the entry type and the open mode.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

OPN - Open an entry

Call:
LD BC,name
LD D,open-mode
LDA 14
SBR E3 ;; kernel jump

Action:
Open the entry named by BC with the open mode given by D (only for FILE,
SHARED and MAP entries, the QUEUE entries are always opened with only the
WRITE mode). To be opened, an entry should have the access rights asked by the
open mode and should not be already exclusively opened. The open mode is an OR of
the following values:

1000 := EXCLUSIVE mode
0100 := READ mode
0010 := WRITE mode
0001 := APPEND mode (FILE only)

The descriptor is returned in E. Opening with the APPEND mode will sets the
position at the end. Opening with only the WRITE mode will rewind the descriptor
and resets the FILE. APPEND mode should be given with READ or WRITE mode.
Opening with WRITE mode will set the EXCLUSIVE mode. It is not possible to open
with the EXCLUSIVE mode if at least one link exists. Opening an entry will increase
by 1 its number of links.

Return:
CARRY if success; E contains the opened descriptor.
No CARRY on error, error code into A.

Error Code:
F1 No such entry
F3 Entry is busy
F4 Access denied
D0 No DS free
D1 Exclusively opened

CLO - Close an opened entry

Call:
LD E,descriptor
LDA 15
SBR E3 ;; kernel jump

Action:
Close the entry linked to the descriptor given by E. If the entry is a MAP, a DUPLEX,
a CONSOLE or a LOCK, the entry is deleted from the file system.

• If the entry is a QUEUE and the descriptor has the READ access, the entry is
deleted, and all the other descriptors linked to this entry are invalidated; else
the close work normally.

• If the entry is a DUPLEX, the connection is broken and the entry is deleted.
• If the entry is a SHARED the entry will remind till the last descriptor is

closed.
• If the entry is a MAP, the block is unmapped and all the other descriptors

linked to this entry are invalidated.
• If the entry is a FILE, it closes the descriptor and the entry reminds.
• If the entry is a CONSOLE and the current active CONSOLE is linked to it,

the kernel will display Closed! and no action will be possible except to
change the active CONSOLE by the SELECT key.

Closing an entry will decrease by 1 its number of links.

Return:
CARRY if success. The descriptor in E is invalidated and is no more usable.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

REA - Read data from a descriptor

Call:
LD BC,data-buffer
LD E,descriptor
LD L,number-of-bytes
LDA 16
SBR E3 ;; kernel jump

Action:
Read the number of bytes given by L from the opened descriptor E and store the data
to the buffer pointed by BC.
While reading from a QUEUE or a DUPLEX entry, the number of bytes specified is
discarded, and a complete message is stored. Only the process which created the
QUEUE can read from it. The real number of bytes read is returned in L.
Reading from a CONSOLE will suspend the process until the number of bytes is
reached or the ENTER or the DOWN-ARROW is pressed; If the UP-ARROW is
pressed, the error D3 (End of file) is returned; If only 1 byte is asked from a
CONSOLE descriptor, REA will return even ENTER, DOWN-ARROW or UP-
ARROW are not pressed.
It is not possible to read from a LOCK nor a SHARED nor a MAP.
To read, the descriptor should be opened with the READ mode.

Return:
CARRY if success; L contains the number of bytes read.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
F4 Access denied
D2 Not a valid DS
D3 End of file
D4 Queue is empty

WRI - Write data to a descriptor

Call:
LD BC,data-buffer
LD E,descriptor
LD L,number-of-bytes
LDA 17
SBR E3 ;; kernel jump

Action:
Write the number of bytes given by L from the buffer pointed by BC to the descriptor
given by E. The real number of bytes written is returned into L.
Writing to a CONSOLE entry will suspend the process if a WRI request is already
pending. If a process tries to write more bytes than possible, the system will write all
the bytes until the end of file, discards the remaining and returns the real number of
bytes written.
When writing into a FILE descriptor, the real length is updated.
When writing to a FILE more bytes than the amount free, the system will write all the
bytes until the complete FILE space is full, and return the real number of bytes
written.
If a process tries to write more bytes than free into a QUEUE or a DUPLEX entry, an
error is returned but nothing will be written.
It is not possible to write to a LOCK nor to a SHARED or a MAP entry.
To write, the descriptor should be opened with the WRITE mode.

Return:
CARRY if success; L contains the real number of bytes written.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
F4 Access denied
D2 Not a valid DS
D5 Queue is full

TEL - Get the current position of a descriptor

Call:
LD E,descriptor
LDA 18
SBR E3 ;; kernel jump

Action:
Return the current position of the descriptor E into HL. For a CONSOLE, a QUEUE
or a DUPLEX descriptor returns always 0. It is not possible to get the position from a
LOCK nor a SHARED nor a MAP descriptor.

Return:
CARRY if success; HL contains the current position.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

SEK - Set the current position of a descriptor

Call:
LD E,descriptor
LD HL,offset
LDA 19
SBR E3 ;; kernel jump

Action:
Set the current position of the descriptor E to the offset given by HL, and return the
real offset set into HL. The offset is always specified from the beginning of the
descriptor. It is not possible to set the position after the end. SEK is without effect for
the CONSOLE or QUEUE or DUPLEX descriptors.
It is not possible to set the position for a LOCK nor a SHARED nor a MAP
descriptor.

Return:
CARRY if success; HL contains the real offset set.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS
D3 End of file

WAI - Wait from a descriptor

Call:
LD E,descriptor
LDA 1A
SBR E3 ;; kernel jump

Action:
Suspend the calling process until a message is available from the QUEUE or the
DUPLEX descriptor given by E, and return the number of bytes present in the
QUEUE or the DUPLEX into L. Waiting from a CONSOLE or from a FILE always
return, but is not suspensive.
It is not possible to wait from a LOCK nor a SHARED nor a MAP entry.
Only the process which have the READ access can wait from it.

Return:
CARRY if success; L contains the number of bytes present in the QUEUE.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid descriptor

CNT - Connect a DUPLEX to a peer DUPLEX

Call:
LD BC,name
LD E,descriptor
LDA A,1B
SBR E3 ;; kernel jump

Action:
Realize a connection between the DUPLEX descriptor given in E and the peer
DUPLEX named by BC. To be successful, both DUPLEX should be free from any
connection.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid descriptor
D6 Can not connect

GET - Get data from a SHARED/MAP descriptor

Call:
LD BC,data-buffer
LD E,descriptor
LD H,offset
LD L,number-of-bytes
LDA 1C
SBR E3 ;; kernel jump

Action:
Get the number of bytes L located at the offset H from the SHARED or MAP
descriptor E and put then into the buffer pointed by BC. If the offset H + the number
of bytes L are greater than the SHARED or MAP, an error is returned and no get is
done.
It is not possible to do this action on a non SHARED or MAP entry.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS
D7 Out of shared

PUT - Put data to a SHARED/MAP descriptor

Call:
LD BC,data-buffer
LD E,descriptor
LD H,offset
LD L,number-of-bytes
LDA 1D
SBR E3 ;; kernel jump

Action:
Put the number of bytes L located at the offset H from the buffer pointed by BC to the
SHARED or MAP descriptor E. If the offset H + the number of bytes L are greater
than the SHARED or MAP, an error is returned and no put is done.
It is not possible to do this action on a non SHARED or MAP entry.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS
D7 Out of shared

GIV - Give a LOCK

Call:
LD E,descriptor
LDA 1E
SBR E3 ;; kernel jump

Action:
Release the LOCK pointed by the descriptor in E. If a process is waiting for the
LOCK (TAK), it will be rescheduled and will become owner of the descriptor.
It is not possible to do this action on a non LOCK entry.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

TAK - Take a LOCK

Call:
LD E,descriptor
LDA 1F
SBR E3 ;; kernel jump

Action:
Take the LOCK pointed by the descriptor in E. If a process is already owner of the
LOCK, the calling process will be suspended until the LOCK is released (GIV).
It is not possible to do this action on a non LOCK entry.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

SCN - Set a CONSOLE active

Call:
LD E,descriptor
LDA 20
SBR E3 ;; kernel jump

Action:
Activate the CONSOLE linked to the descriptor E. It is possible only if the current
active CONSOLE is closed, or if the current active CONSOLE is owned by the
calling process, and has no request pending.
Activate a CONSOLE will start the CONSOLE-IO process on this CONSOLE.
The current CONSOLE, the process-id PID and the process name linked to are
displayed by pressing the OFF key.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

FLU - Flush a CONSOLE output

Call:
LD E,descriptor
LDA 21
SBR E3 ;; kernel jump

Action:
Flush the output request of the CONSOLE descriptor E, if there is one, and suspend
the calling process like a WRI request were pending. This action can be used to
activate the output before to end a process.
The pending message is displayed until the RCL is pressed to refresh the console.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

RFR - Refresh a CONSOLE output

Call:
LD E,descriptor
LDA 22
SBR E3 ;; kernel jump

Action:
Refresh the output request of the CONSOLE descriptor E, if there is one, kill all
pending message. This avoid the calling process to be suspended if a WRI is pending.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

EDI - Start a editable REA on a CONSOLE

Call:
LD BC,buffer
LD E,descriptor
LD H,cursor
LD L,number-of-bytes
LDA 23
SBR E3 ;; kernel jump

Action:
Fill the input buffer of a CONSOLE descriptor given in E with the string in the buffer
pointed by BC, start editing with the cursor at the position H, make a READ request
and return the real number of bytes read in L.
This action looks like REA but the input buffer is filled before instead of to be
cleaned, and the process can specify the initial position of the cursor.
The buffer is filled by the string present in the buffer, until a non-printable character is
found (character < &20), after fill the remaining buffer with the CR character (&0D).
If the cursor is specified after the string end, it will be put on last character before CR.
If the cursor is after the number of bytes read, it will return at the first character read.
It is also possible to give an empty string.
The input buffer will be filled up to 26 characters.
At the return, the buffer pointed by BC will be filled with the characters read and the
number of characters will be return into L.
It is not possible to use this action if a REA request is already running.

Return:
CARRY if success; L contains the number of bytes read.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D2 Not a valid DS

HDR - Build an executable header

Call:
LD D,number-of-page
LD E,descriptor
LD HL,global-address-offset
LDA 24
SBR E3 ;; kernel jump

Action:
Build an executable header in the FILE entry pointed by the descriptor given by E.
The number of pages to be allocated when launching a process (XEQ) is given by D
and the offset of the global address in HL.
The executable header as the following format:

byte 0: executable signature &F3
byte 1,2: real-size (copy of the bytes 5,6 of the entry)
byte 3: number of pages to allocate for the stack and the

global area excluding the arguments-page.
byte 4,5: offset of the global area in the global block.

The descriptor should be opened in WRITE mode.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
F4 Access denied
D2 Not a valid DS

GBL - Get the global address

Call:
LDA 25
SBR E3 ;; kernel jump

Action:
Return the global address of the calling process into BC. The global address of a
process is located on the top of the stack at the offset fixed by building the executable
header (HDR).
BC - 2 is a pointer to the arguments page initialized by XEQ when starting. The
global address is the same value set in BC when a process is started and (BC - 2)
is the value of HL.

Return:
CARRY and BC contains the global address.

Error Code:
None

PID - Get the process-id

Call:
LDA 26
SBR E3 ;; kernel jump

Action:
Return the process-id PID of the calling process into H.

Return:
CARRY and H contains the process PID.

Error Code:
None.

FID - GET the father process-id

Call:
LDA 27
SBR E3 ;; kernel jump

Action:
Return the father process-id FID of the calling process into H.

Return:
CARRY and H contains the father process FID.

Error Code:
None.

XEQ - Execute a process

Call:
LD BC,name
LD D,input-descriptor
LD E,output-descriptor
LD HL,arguments
LDA 28
SBR E3 ;; kernel jump

Action:
Start the process named by BC; pass to it the descriptors in and out given by D and E
and the arguments page pointed by HL. The son process-id is returned to the father
into H. The son process becomes owner of the descriptors D and E. The arguments
page is copied into the son space with a limit of 63 bytes; the last is always 0. The
descriptors in and out given to the son should be owned by the father and be valid. It
is possible to give only descriptors to CONSOLE, FILE, DUPLEX or QUEUE. The
descriptor D and E may be the same.

The son process starts with the global address into BC, the descriptors in and out into
D and E and the arguments page pointer into HL. The arguments page address is
copied into (BC - 2).
The son process gets the same priority as its father, its event queue is removed and the
event mask is set to 0.
A return address is pushed into the stack to handle the son termination.
When the top-level RET is executed, the process is terminated, all its resources are
released, all its descriptors closed and the event 4 is raised to its father with the son
returned value of DE.
When a father is returned, all its sons are still running, but their father process-id is set
to &FF.
The executable FILE should have the access READ and EXECUTE. Executing a
process will increase by 1 the number of links of the entry; when the process returns,
the number of links will be decrease by 1.
It is not possible to start a process if the FILE entry is exclusively opened.
The number of pages allocated to the son while starting are set into the executable
FILE header:

byte 0: executable signature &F3
byte 1,2: real-size (copy of the bytes 5,6 of the entry)
byte 3: number of page to allocated for the stack and the

global area excluding the arguments-page.
byte 4,5: offset of the global area in the global block.

Return:
CARRY if success; H contains the son process-id.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D1 Exclusively opened
D2 Not a valid DS
F1 No such entry

F4 Access denied
C0 No process free
C2 Not a valid DS for XEQ
C3 Not a valid signature

END - Terminate a process

Call:
LD H,process-id or &FF
LDA 29
SBR E3 ;; kernel jump

Action:
Terminate the process pointed by H or itself if &FF. When a process is terminated, all its
resources are released, all its descriptors are closed and the event 5 is raised to its father.
All its sons are still running, but their father process-id FID is set to &FF.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C1 No such process

PRI - Change the priority of a process

Call:
LD H,process-id
LD L,new-priority
LDA 2A
SBR E3 ;; kernel jump

Action:
Change the priority of the process pointed by H (or itself if &FF) with the priority in
L. The priority is a number from &0 to &F. &0 is the highest and &F is the lowest.
The priority is the number of consecutive slots allocated by the scheduler to a process
until 16 is reached. A priority 0 will allow 16 slots and priority 15 will allow 1 slot.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C1 No such process

STA - Process status

Call:
LD BC,process-structure
LD H,process-id
LDA 2B
SBR E3 ;; kernel jump

Action:
Return the process status of the process pointed by H (&FF for itself) into the process
structure pointed by BC. The information are:

byte 0 Status bits
80 := READY-to-RECEIVE
40 := PAUSED
20 := QUEUE/DUPLEX Waiting
10 := LOCK Waiting
08 := CONSOLE input pending
04 := CONSOLE output pending
02 := TRACED
01 := KERNEL jump pending

byte 1 Priority (4 lower bits)
byte 2 Event mask
byte 3

bits7-4 Extended status bits
02 := TIMER running
01 := DEBUG

bits3-0 Father process-id (4 lower bits)
bytes 4-12 Process name

Return:
CARRY if success; BC is filled with the process-structure.
No CARRY on error, error code into A.

Error Code:
C1 No such process

PAU - Pause the calling process for a delay

Call:
LD DE,delay
LDA 2C
SBR E3 ;; kernel jump

Action:
Pause for the delay DE the calling process. The process is suspended until the delay is
elapsed. The delay is in scheduler slots, and its decremented each time the scheduler
is running. When the delay reaches &FFFF, the process is restarted.

Return:
CARRY.

Error Code:
None.

EVT - Create the event queue for asynchronous events

Call:
LD L,enabled-event-mask
LDA 2D
SBR E3 ;; kernel jump

Action:
Create the event queue for the calling process to receive the asynchronous events and
set the event mask to L. The mask is an OR of the events from 0 to 7. It is not possible
to create an event queue if one is already created.
When an asynchronous event is raised to the process, and if the event is enabled, the
event is queued and register the raising process-id, the event number, and the eventual
value DE from the raising process (events 0-4).
The events 4 to 7 are reserved to the kernel:

4 := Son returned to the scheduler with the value DE
5 := Son terminated
6 := TIME is reached
7 := BREAK

The events 0 to 3 are available for user purpose. The value DE is meaningful.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C4 Event queue already created

KIL - Destroy the events queue

Call:
LDA 2E
SBR E3 ;; kernel jump

Action:
Destroy the events queue of the calling process, and reset the event-enable-mask to
&00. All pending events are lost.

Return:
CARRY.

Error Code:
None.

MSK - Set the events mask

Call:
LD H,disabled-event-mask
LD L,enabled-event-mask
LDA 2F
SBR E3 ;; kernel jump

Action:
Change the events mask by clearing the events given by H and setting the events
given by L. If H and L are &00, the mask is unchanged and is useful to get the current
event mask in L.
This action has no effect if the events queue is not created.

Return:
CARRY and L contains the current event mask.

Error Code:
None.

POL - Poll the event queue and get the oldest event

Call:
LDA 30
SBR E3 ;; kernel jump

Action:
Poll the events queue and if an event is pending, return the raising process-id into H,
the event number into L, and the sent value of DE into DE for the event 0 to 4. If no
event is pending an error is returned.

Return:
CARRY if success; H contains the process-id, L the event number and DE the sent
value for events 0 to 4.
No CARRY on error, error code into A.

Error Code:
C4 No event queue
D4 Queue empty

RAI - Raise an event to process

Call:
LD DE,value
LD H,process-id
LD L,event-number
LDA 31
SBR E3 ;; kernel jump

Action:
Raise the event number in L with the value from DE to the process pointed by H. Only the
events from 0 to 3 may be raised by a process. This action has no effect if the receiver
process has no events queue.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C1 No such process
C5 No such event number

TIM - Initialized the TIME event

Call:
LD DE,delay
LDA 32
SBR E3 ;; kernel jump

Action:
Initialize a TIME event with the delay in DE. The scheduler will decrement the TIME
delay and when &FFFF is reached, it will push the event 6 to the process. Only one
TIME is allowed by process and it is not possible to initialize a new one until the first
is not reached. This action is without effect if the calling process does not handled the
event 6.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C6 TIME is running

ABT - Abort the TIME delay

Call:
LDA 33
SBR E3 ;; kernel jump

Action:
Abort the TIME delay if one is running.

Return:
CARRY.

Error Code:
None.

SEN - Send a message to a process

Call:
LD BC,message-address
LD H,process-id
LD L,length
LDA 34
SBR E3 ;; kernel jump

Action:
Send the message pointed by BC with the length L to the process pointed by H. The
destination process should be in the state READY-TO-RECEIVE. The message will
be copied into the destination process space after the needed number of pages is
allocated. If not enough pages are available to send the message, an error is returned.
The destination process will restart when a message is received with the address of
the message in BC, its length in L and the sender process-id in H. The receiver process
need to free the block pointed by BC after the message has been treated.
It is not possible to send a message to itself.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
B0 No enough page free
C1 No such process
C7 Process not READY-TO-RECEIVE

SNR - Send and receive a message

Call:
LD BC,message-address
LD H,process-id
LD L,length
LDA 35
SBR E3 ;; kernel jump

Action:
Like SEN, send a message to another process, and wait for a reception of a message.
When the message is sent, the message block is released and the process goes into the
state READY-TO-RECEIVE. Like REC, the calling process is restarted when a
message is received, and BC will contain the address of the message, L its length and
H the sender process-id.
The receiver process need to free the block pointed by BC after the message has been
treated.
It is not possible to send a message to itself.

Return:
CARRY if success; BC contains the message address, L its length and H the sender
process-id.
No CARRY on error, error code into A.

Error Code:
B0 No enough page free
C1 No such process
C7 Process not READY-TO-RECEIVE

REC - Receive a message from a process

Call:
LDA 36
SBR E3 ;; kernel jump

Action:
The calling process is suspended until a message is received; when the process
execution restarts, BC will contain the address of the message, L its length and H the
sender process-id.
The message is copied into the receiver space after the pages are allocated. If there is
not enough page available to send the message, the receiver process will be not
restarted.
The receiver process need to free the block pointed by BC after the message has been
treated.

Return:
CARRY and BC contains the message address, L its length and H the sender process-
id.

Error Code:
None.

DBG - Execute a process under debug

Call:
LD BC,name
LD D,input-descriptor
LD E,output-descriptor
LD HL,arguments
LDA 37
SBR E3 ;; kernel jump

Action:
Start the process named by BC; pass to it the descriptors in and out given by D and E
and the arguments page pointed by HL. The son process-id is returned to the father
into H. The son process becomes owner of the descriptors D and E. The arguments
page is copied into the son space with a limit of 63 bytes; the last is always 0. The
descriptors in and out given to the son should be owned by the father and be valid. It
is possible to give only descriptors to CONSOLE, FILE, DUPLEX or QUEUE. The
descriptor D and E may be the same.

Under debug, the son process is stopped. It is fully controlled by its father, through
the kernel jumps TRA, REG, COD and DAT.

Like XEQ, the son process starts with the global address into BC, the descriptors in
and out into D and E and the arguments page pointer into HL. The arguments page
address is copied into (BC - 2).
The son process gets the same priority as its father, its event queue is removed and the
event mask is set to 0.
A return address is pushed into the stack to handle the son termination.
When the top-level RET is executed, the process is terminated, all its resources are
released, all its descriptors closed and the event 4 is raised to its father with the son
returned value of DE.
If the father process is ended, the debugged process is also ended.
The executable FILE should have the access READ and EXECUTE. Executing a
process will increase by 1 the number of links of the entry; when the process returns,
the number of links will be decrease by 1.
It is not possible to start a process if the FILE entry is exclusively opened.
The number of pages allocated to the son while starting are set into the executable
FILE header:

byte 0: executable signature &F3
byte 1,2: real-size (copy of the bytes 5,6 of the entry)
byte 3: number of page to allocated for the stack and the

global area excluding the arguments-page.
byte 4,5: offset of the global area in the global block.

Return:
CARRY if success; H contains the son process-id.
No CARRY on error, error code into A.

Error Code:
B1 Not owner of this resource
D1 Exclusively opened

D2 Not a valid DS
F1 No such entry
F4 Access denied
C0 No process free
C2 Not a valid DS for XEQ
C3 Not a valid signature

TRA - Trace the next instruction of a debugged process

Call:
LD H,process-id
LDA 38
SBR E3 ;; kernel jump

Action:
Trace the next instruction of the process pointed by H. This process should have been
launched by DBG. The calling process is suspended until the debugged process has
executed its instruction.

Return:
CARRY if success.
No CARRY on error, error code into A.

Error Code:
C1 No such process
E0 Process not debugged

REG - Get registers of a debugged process

Call:
LD BC,register-structure
LD H,process-id
LDA 39
SBR E3 ;; kernel jump

Action:
Get the registers into BC of the process pointed by H. This process should have been
launched by DBG. The register-structure is:

byte 0-1 := SP
byte 2-3 := HL
byte 4-5 := DE
byte 6-7 := BC
byte 8 := A
byte 9-10 := PC
byte 11 := F

Return:
CARRY if success; BC is filled with the registers.
No CARRY on error, error code into A.

Error Code:
C1 No such process
E0 Process not debugged

COD - Get code from a debugged process

Call:
LD BC,code-buffer
LD H,process-id
LD L,number-of-bytes
LDA 3A
SBR E3 ;; kernel jump

Action:
Get the number of bytes given by L to the code buffer BC of the process pointed by
H, starting at the current PC address of the debugged process. This process should
have been launched by DBG.

Return:
CARRY if success; BC is filled with the code.
No CARRY on error, error code into A.

Error Code:
C1 No such process
E0 Process not debugged

DAT - Get data from a debugged process

Call:
LD BC,data-buffer
LD DE,data-address
LD H,process-id
LD L,number-of-bytes
LDA 3B
SBR E3 ;; kernel jump

Action:
Get the number of bytes given by L to the data buffer BC of the process pointed by H,
starting at the address specified by DE. The data space, from DE to (DE + L)
should be located in the same block and this block should be owned by the debugged
process. This process should have been launched by DBG.

Return:
CARRY if success; BC is filled with the data.
No CARRY on error, error code into A.

Error Code:
C1 No such process
E0 Process not debugged
E1 Data outside process space

RCH - Reschedule

Call:
LDA 3C
SBR E3 ;; kernel jump

Action:
Reschedule the process activity; Suspend the calling process and start the next process
ready. If no other process may be started, the calling process is restarted.
When the kernel-jump return, the process is rescheduled.

Return:
CARRY.

Error Code:
None.

DWN - Down the system and return to BASIC

Call:
LDA 3D
SBR E3 ;; kernel jump

Action:
Down the system: end all the running processes without warning the fathers, close all
the descriptors, release all the resources and return to BASIC. This is the only way to
exit properly from the system. No privilege are asked to execute it. The system is
always calling DWN before starting. This kernel jump should never return.

Return:
DWN never returns.

Error Code:
None.

Programs examples

Here after an example of a funny program, called RUNPRO. This executable will blink the
RUN or the PRO flags on the LCD.

The program first tries to create a lock (RUN.lock); If it is successful, the RUN flag is set or
clear. Else, it tries to create a second lock (PRO.lock); If it is successful, the PRO flag is set
or clear; Else the executable returns with the error code &F2.

The clear/set are delayed, and the both PRO flag is managed 2 times faster than the RUN flag.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; RUNPRO. A funny executable blinking the
;; RUN or the PRO flags on the LCD.

;; The program first tries to create a lock
;; (RUN.lock),;If it is successful, the RUN
;; flag is set or clear. Else, it tries to
;; create a second lock (PRO.lock); If it
;; is successful, the PRO flag is set or
;; clear; Else the executable returns with
;; the error code &F2.

;; The clear/set are delayed, and so, the
;; PRO flag is managed 2 times faster than
;; the RUN flag.

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

RUNPRO:
.LOCAL

.BYTE
BLDHEADER RUNPRO.asm$$._length 01 0000

.CODE
;; RUN bit in LOWLCDFLAG

RUNbit .EQU &40
;; PRO bit in LOWLCDFLAG

PRObit .EQU &20

;; The process enters here
;; BC contains the global address
;; DE the in and out descriptors
;; HL points to the arguments

PUSH DE
LD H,RUNbit
LD BC,PC
LDA *_*offRUN

trylock:
ADD BC
;; try to create a lock (LOK) named by BC
MMPS krn.LOK
STA E
JR C,loop
;; error! So test if PRObit. If yes exit with error code
LDA H
CPA PRObit
JR Z,outerr
;; shift right and try again with next
RCF
SR
STA H
LDA 0A
JR trylock

loop:
LDA H
SL
;; set the delay value in DE (PRO x 2 faster the RUN)
STA E
LD D,00
LD B,<LOWLCDFLAG
LD C,>LOWLCDFLAG

forever:
LDA H
XOR FF
STA H
;; critical section - sure to be proof of interrupt
DI
CP H,80
JR C,clearbit
;; set the flag bit
LDA H
OR (BC)
JR loadbit

clearbit:
;; clear the flag bit
LDA (BC)
STA L
LDA H
STA (BC)
LDA L
AND (BC)

loadbit:
STA (BC)
;; critical section - restore the interrupts
EI
;; delay the process for the value DE
MMPS krn.PAU
JR C,forever
STA E

outerr:
LD D,00

out:

POP BC
;; return to father with code in DE
RET

.TEXT
offRUN:

;; lock name for RUN flag
"RUN.lock\00\00"
;; lock name for PRO flag
"PRO.lock\00\00"

.END

The next example SHOWKEY is a small program reading one key from the input console and
displaying the key code in hexadecimal.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; SHOWKEY - Get a key from a console and print
;; the ASCII code to the same console
;;

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

SHOWKEY:
.LOCAL

;; MMPS executable header. Perhaps a macro, no?
;
.BYTE
BLDHEADER SHOWKEY.asm$$._length 01 0000

;;
.CODE
;; The process enters here
;; BC = global address
;; D in and E out descriptor
;; HL = argument address
LD BC,HL

;; Get the descriptor type and access into H
MMPS krn.DES
JR NC,outerr
LDA H

;; We expect a console exclusively
BIT 10
JR Z,outerrcon

forever:
;; Get on key from the console. When key is
;; pressed, we return immediately
LD L,01
MMPS krn.REA

;; Error on read ? We just exit
JR NC,outerr

LDA (BC)
PUSH A
CALL highTOHEX

STI (BC)
POP A
CALL lowTOHEX
STD (BC)

;; Refresh the console. This will avoid
;; to be susped if a message is pending.
MMPS krn.RFR

;; Write the ASCII code to console
LD L,02
MMPS krn.WRI
JR forever

outerrcon:
;; Return No such descriptor
LDA err.NOD

outerr:
;; Error. Return error code from A into
;; E and set D to 0.
LD D,00
STA E
RET

.END

The example BDGRD described here is a mechanism of client/server using an asynchronous
queue (QUE). The first instance of the executable BDGRD will create a queue (QUE) named
qBDGRD and inherit the read access; it is the server. The second instance (and all others) will
not be able the create the queue and will just reach to OPN it; it is the client. The client wait
for a message from its console, and send it to the server, the server will print it on his console.

The example has no interest except to learn how to work with MMPS. Instead of to print the
messages, it is possible to save them in a file, etc...
This principle is more or less what is done when you send a document to a printer spooler, or
like the syslogd daemon on the UNIX systems.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; BDGRD - Server/client Queue tests for MMPS
;; this test will test a mechanism of the
;; asynchronous queues. These queues are
;; anonymous.

;; The first instance of BDGRD will create the
;; queue qBDGRD. It has the read access and
;; becomes the server. Only one server may
;; exists, because MMPS will fails to create
;; another queue of the same name. All messages
;; read from the queue will be written to the
;; out descriptor D.

;; All the following instances will try to
;; open the queue qBDGRD. They will have the
;; write access, and become client.
;; Client will read from its in descriptor
;; and write to the server through the queue.

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

BDGRD:
.LOCAL

;; MMPS executable header.
;;
.BYTE
BLDHEADER BDGRD.asm$$._length 01 0000

;;
.CODE
;; The process enters here
;; BC = global address
;; D in and E out descriptor

;; HL = argument address

;; Expected to be server, so put 's' in H
;;
LD H,$s

;; Server queue name in BC
;;
LD BC,PC
LDA *_*qName
ADD BC
LD L,01
;; Create a queue
;;
MMPS krn.QUE
JR C,doalloc

;; Unable to create a queue. Not server
;; So client just tres to open it
;;
LD E,04
MMPS krn.OPN
JR NC,outerr

;; Unable to create a queue. Not server
;; So client just tries to open it
;;
LD E,04
MMPS krn.OPN
JR NC,outerr

;; We are client, so put 'c' in H
;;
LD H,$c

;; If we open the queue, we read from D
;; and write to the queue. So exchange
;; If we open the queue, we read from D
;; and write to the queue. So exchange
;; the D and E descriptors
;;
LDA D
STA L
LDA E
STA D
LDA L
STA E

doalloc:
;; Ok. So we need a page (64 bytes) as
;; a buffer to receive and send messages.
;; We will allocate it.
;; Request 1 page in L and the address
;; of the block is returned into BC
;;
LD L,01
MMPS krn.BAL
JR NC,outerr

forever:
;; Main loop: wait from descriptor E
;; MMPS will suspend for wait only if E is
;; a queue else we return with CARRY set
;;
MMPS krn.WAI
JR NC,outerr

;; Get our PID to build PID to hexa digit
;; and add 's' or 'c'
;;
PUSH HL
MMPS krn.PID
LDA H
RCF
ADC $0
STI (BC)
POP HL
LDA H
STI (BC)

;; Because in header we request 1 page
;; for global area, so 1 page = 64 bytes
;; Prepare to read 63 bytes max from
;; descriptor R
LD L,3D
MMPS krn.REA
JR NC,outerr

PUSH DE
;; Now we exchange D and E to write on
;; the out descriptor
;;
LDA D
STA E

;; Refresh the output. Nice if E is a
;; console...
MMPS krn.RFR

;; Write the received buffer, L contains
;; the number of bytes really read but we
;; have to add 2 bytes and decrement BC
;; to point to the PID} header
;;
DEC BC
DEC BC
INC L
INC L
MMPS krn.WRI

;; Restore BC for next message to be read
;;
INC BC
INC BC

;; Back to forever loop waiting the next
;; incoming message
POP DE

JR C,forever

outerr:
;; Error. Return error code from A into
;; E and set D to 0.
LD D,00
STA E
RET

.TEXT
;; Name of the server queue: qBDGRD

qName:
"qBDGR\00"

.END

The program below is STARTER. This is the first executable started by the kernel. It has in
charge to wait an entry on the console, assume that is a executable name, so try to launch it
(XEQ), finally receive and display the asynchronous events from the kernel, like a son
process termination.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; STARTER - The first executable launched
;; by the MMPS kernel boot.

;; It creates a event queue to receive the
;; events 4, 5 and 7 from the kernel. It
;; polls the events queue and display the
;; catched both event 4 (normal son process
;; termination with the return code) and
;; event 5 (ended son process).

;; It reads from the console, assumes that
;; an executable name is given followed by
;; some arguments, opens a new console and
;; activates it, and tries to lauch the
;; process on this console.
;; If this fails, it displays the error
;; code.

;; Note that the RCL key should be pressed
;; to refresh the console output.

;; If just ENTER is read, it just polls
;; the events queue.

;; If End-Of-File (UP-Arrow) is received
;; and the STARTER PID is 0, a kernel
;; shutdown (DWN) is performed.

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

STARTER:
.LOCAL

.BYTE

BLDHEADER STARTER.asm$$._length 01 0040

.CODE

;; program enters here
;; BC contains the global address

;; DE the in and out descriptors
;; HL points to the arguments
PUSH DE
LD BC,PC
LDA *_*starterCON
ADD BC
LD DE,BC
LD BC,HL

;; set event mask to 7, 5 and 4
;; and create the event queue
LD L,B0
MMPS krn.EVT
LD L,02

copyseed:
LDI (DE)
STI (BC)
DJC copyseed

AND (BC),00
LDA 0D
ADD BC
POP DE

checkevent:
PUSH DE

checkeventloop:
;; check for any events in queue
MMPS krn.POL
JR NC,noevent

;; event is present: due to mask, we expect
;; 7 := BREAK key -> do nothing
;; 5 := son killed -> display '>p -5'
;; 4 := son exited -> display '>p +4:ddee'
LDA *_*evt4STR[evtPChere]
CP L,04
JR Z,doevent
CP L,05
JR NZ,checkeventloop
LDA *_*evt5STR[evtPChere]

doevent:
PUSH BC
PUSH DE
PUSH HL
LD DE,BC
LD BC,SP
INC BC
LD HL,BC
LD BC,PC

evtPChere:
ADD BC
;; Here call the FMTSRING from the run
;; time with in
;; BC the format string
;; DE the formatted string
;; HL the structure to format

CALL FMTSTRING

SCF
LDA E
POP BC
POP BC
POP BC
SBC C
STA L
POP DE

;; write events to out descriptor E
MMPS krn.WRI
JR checkevent

noevent:
POP DE

;; read 27 characters from in descriptor E
;; we read more than 26 characters to force
;; the user to press the ENTER key
LD L,#27
MMPS krn.REA
;; error from REA? perhaps EOF
JR NC,checkforout

;; nothing read
CP L,00
JR Z,checkevent
PUSH DE
PUSH BC
LDA C
SCF
SBC 10
STA C
;; create a TMP name from seed CONp.xxxx
MMPS krn.TMP

;; open a new console
MMPS krn.CON
POP HL
JR NC,confailed

CALL NEXTARG
JR Z,closecon

;; select the console as active
MMPS krn.SCN
LDA E
STA D
;; launch the son !
;; BC the name of the son
;; D and E the descriptor to the console
;; HL the remaining assumed as arguments
MMPS krn.XEQ

;; oops ! launch failed
JR NC,closecon

;; Display >P with P the PID of the son
LDA 3E
STI (BC)
LDA H
OR 30
STD (BC)
POP DE

;; refresh the console. If a WRI is pending
;; process will suspend
MMPS krn.RFR
;;

;; display >p with p = son pid's
LD L,02
MMPS krn.WRI
JR checkevent

closecon:
STA H
;; Mmmm... launch failed. Close the console
MMPS krn.CLO

showerr:
;; Show !ee
POP DE

;; restore our console
MMPS krn.SCN
LDA 21
STI (BC)
LDA H
CALL highTOHEX
STI (BC)
LDA H
CALL lowTOHEX
STD (BC)
DEC BC

;; write !ee with ee the error code from XEQ
LD L,03
MMPS krn.WRI
JR checkevent

confailed:
LD BC,HL
STA H
JR showerr

checkforout:
;; error code is D3 ? End-of-file
CPA err.EOF
JR NZ,fatal

;; who am i ? is my PID 0 ?
MMPS krn.PID
CP H,00
JR NZ,out

;; Yes ! User ask me to DWN the kernel
MMPS krn.DWN
;; DWN should never return
;; here we enter into the FATAL hook of MMPS

fatal:
SBR (93)

out:
;; STARTER exits normally with &0000
CLA
STA D
STA E
RET

SBC C
SBC C
SBC C
SBC C

.TEXT
evt4STR:

;; string for '>p +v:eeee'
">.L +.L:.W\00"

evt5STR:
;; string for '>p -v'
">.L -.L\00"

starterCON:
;; seed for console name
"CON\00"

.END

In this example, the FATAL hook of MMPS is presented. When called by a SBR (&93), the
registers will be saved into the BASIC variable E$ in binary as follow:

FF AA BB CC DD EE HH LL PCPC SPSP
and the RESET vector SBR (&FE) is called. This is useful to debug an unexpected situation
(like a return from DWN).

The DEBUG executable. DEBUG launches a process (DBG) with its arguments and trace it
(TRA). It gets the CPU registers values (REG), displays them and at each key pressed, execute
the next instruction (TRA) of the debugged process.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; DEBUG - A process debugger for MMPS
;; This process has in charge to launch under
;; debugger (DBG) the process named in argument.
;; The remaining arguments are passed to the
;; debugged son.

;; It displays the traced process CPU registers
;; and when a key is pressed, trace the next
;; instruction and updates the CPU registers
;; display.

;; DEBUG creates and activates its own console
;; for its usage, so it keeps unchanged the
;; original IN and OUT descriptors set by the
;; father process for the debugged process.

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

DEBUG:
.LOCAL

;; MMPS executable header.
;;
.BYTE
BLDHEADER DEBUG.asm$$._length 01 0040

.CODE
;; The process enters here
;; BC contains the global address
;; DE the in and out descriptors
;; HL points to the arguments
;;
PUSH DE

;; BC points to the seed for our console
;; and we copy the name to the top of our
;; stack.
LD BC,PC
LDA *_*debugCON
ADD BC
LD DE,BC
LD BC,SP

LDA C
AND C0
STA C
PUSH HL
PUSH BC
LD L,03

copyseed:
LDI (DE)
STI (BC)
DJC copyseed
POP BC
POP HL

;; Create a TMP name from seed DEBp.xxxx
MMPS krn.TMP

;; Open a console for DEBUG. Like that
;; the in and out descriptor coming
;; from our father will be passed to
;; the debugged process. Nice, no ?
MMPS krn.CON

STA D
JR NC,popouterr

;; Activate our console
MMPS krn.SCN

;; We expect to have the name of the
;; process to debug in the argument page.
;; Fetch the next word, and this will
;; start the argument for the debugged
;; process we launch. We restore also
;; the original in and out descriptor
;; receive from our father
CALL NEXTARG
LDA E
POP DE
PUSH A
MMPS krn.DBG

STA D
POP A
;; Error on debug. Save the error code
;; to A and retrieve the out descriptor
JR NC,outerr

STA E
AND (BC),00
LDI (BC)

forever:
LDA H
PUSH A
;; Get the CPU register of the debugged
;; process
MMPS krn.REG

PUSH DE

LD HL,BC
LDA 20
ADD BC
LD DE,BC
PUSH DE

;; Here call the FMTSRING from the run
;; time with in
;; BC the format string
;; DE the formatted string
;; HL the structure to format
LD BC,PC
LDA *_*debugREGstr
ADD BC
CALL FMTSTRING

;; The formatted string is 26 characters:
;; SSSS HHLLDDEEBBCCAA PCPCFF
LD L,#26
POP BC
POP DE

;; Refresh the console. This will avoid
;; to be susped if a message is pending.
MMPS krn.RFR

;; Write the formatted string of the CPU
;; registers to the out descriptor
MMPS krn.WRI

LDA C
AND C0
STA C

;; Wait for one key pressed
LD L,01
MMPS krn.REA
POP A

;; Trace the debugged process. We will
;; suspend until the process has executed
;; its next instruction
STA H
MMPS krn.TRA
JR C,forever

;; Error when tracing. We exit...
out:

;; Return to father with &0000
CLA
STA D
STA E
RET

popouterr:
POP BC

outerr:
;; Error code to E and 0 to D
LDA D

STA E
LD D,00
RET

.TEXT
debugREGstr:

".W .W.W.W.B .W.B\00"

.TEXT
;; Seed for the DEBUGger console name

debugCON:
"DEB\00"

.END

When running a process under debugger, the son process termination does not wake-up the
debugger leader. Use the ON/BREAK key in the debugger console to kill DEBUG.

MAKER is an executable used to copy a program code from the BASIC area into the MMPS
file-system. It also fill the executable header correctly (HDR) and fixes the access right for
execution (fs.REA|fs.XEQ). The name of the executable created is given as argument to
MAKER. The code is loaded into the PC-1500/A BASIC memory as a BASIC program (do not
try to edit it).

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; MAKER - Build a executable file from the
;; BASIC area. The foreign assembled executable
;; should be loaded into the BASIC area with
;; a CLOAD
;; -**- DO NOT TRY TO EDIT THIS PROGRAM -**-

;; MAKER will create a file with the length
;; retrieved from the BASIC area, copy the
;; code and build the MMPS header.
;; The name of the executable is passed in
;; argument to MAKER

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

MAKER:
.LOCAL

;; MMPS executable header.
;
.BYTE
BLDHEADER MAKER.asm$$._length 01 0040

;;
.CODE
;; The process enters here
;; BC = global address
;; D in and E out descriptor
;; HL = argument address
PUSH DE

;; First we create our lock to avoid another
;; MAKER process to run on the same executable
LD BC,PC
LDA *_*makerLOK
ADD BC
MMPS krn.LOK
POP DE
JR NC,outerrnodel

PUSH DE
;; Compute the size of the executable to install.
;; This is ENDBASE - STARTBASIC.
LDS (>STARTBASIC)
LD DE,BC
LDS (>ENDBASIC)
SCF
LDA C
SBC E
STA C
LDA B
SBC D
STA B
PUSH BC

;; Under MMPS, the space for a file should be
;; at the creation. The space to allocate is in
;; number of pages (a page = 64 bytes). So we
;; first add 63 bytes and divide the sum by 64
LDA 3F
ADD BC
LDA C
AEX
AND 0C
SR
SR
STA C
LDA B
AND 3F
SL
SL
RCF
ADC C
JR NZ,l3

;; The number of page is 0. The BASIC is empty.
POP MN
JR popout

l3:
;; Copy the name of the executable to create
;; for the argument line and create the file.
;; We use the access RWX (07)
LD BC,HL
LD E,07
STA L
MMPS krn.FIL
JR NC,pop2outerr

;; For the copy, MAKER access directly the
;; BASIC area. Nice, we set the source address
;; and require 64 bytes (or less) to write
;; into the file
LDS (>STARTBASIC)

copyfrom:
POP HL
PUSH BC
PUSH DE
LDA H

JR NZ,l1
;; If H = 0 and L < 64, so this is the last
;; page, and we copy just the required amount
;; of bytes
LDA L
CPA 40
JR NC,l2

l1:
;; We substract 64 bytes to the size
SCF
LDA L
SBC 40
STA L
LDA H
SBC N
STA H
LDA 40

l2:
POP DE
POP BC
PUSH HL
STA L

;; Load the amount of byte to be written in L
;; Duplicate it in H to check if all is copied
STA H
MMPS krn.WRI
JR NC,pop2outerr

;; Check if all bytes where written
LDA L
CPA H
JR NZ,pop2outeof

;; Next page to be copied
ADD BC

;; It is finished ?
CPA 40
JR C,copyfrom

POP MN

;; Now we prepare to call the build of the
;; executable header (HDR). The user code
;; contains the number of pages to allocate
;; when launching the program (XEQ) and the
;; offset of the global address. This is the
;; amount of memory reserved for the stack
;; and the variables. In most case, this
;; will be 0 and 0. Because HDR will add
;; 1 pages for the stack and an offset of
;; &0040 to reserve the stack space.
LDS (>STARTBASIC)
LDA 05
ADD BC
LDD (BC)
STA L
LDD (BC)

STA H
LDA (BC)
STA D
MMPS krn.HDR
JR NC,pop1outerr

;; Done. Close the file and exit with return
;; code &0000
MMPS krn.CLO

popout:
POP DE
CLA
STA D
STA E
RET

pop2outeof:
LDA err.EOF
;; Error when calling the kernel-jumps.

pop2outerr:
POP MN

pop1outerr:
POP MN

;; If the error code specify that the file
;; already exist, we skip the file deletion.
CPA err.EIS
JR Z,outerrnodel

;; Push the error code, because we want to
;; return it to our father.
PUSH A

;; The file has to be closed before to try
;; to delete it.
MMPS krn.CLO

;; Retrieve our global address. The name is
;; the argument page.
MMPS krn.GBL

DEC BC
LDD (BC)
STA L
LDA (BC)
STA B
LDA L
STA C

;; The file is deleted.
MMPS krn.DEL

POP A

outerrnodel:
;; Error. Return error code from A into
;; E and set D to 0.
LD D,00
STA E

RET

.TEXT
makerLOK:

;; Name of lock to prevent a new instance
;; of MAKER to run.
"MKR.lock"

.END

To test MAKER, return to BASIC and load (CLOAD) the executable SHOWKEY.wav from the
Images/Examples directory.
Now, start MMPS (CALL &C5) and press RCL. Type MAKER SHOWKEY and wait for the
Closed! message. Use the SEL key (on the left of RCL) to select the STARTER console.
Press RCL and ENTER. If you see >p: +4:0000 the SHOWKEY program is now installed.
The executable FILES should display an entry like this;

FoRWE 01 01 003A SHOWKEY

Now launch SHOWKEY. Each time a key is pressed, its code is printed in hexadecimal. Use
ON/BREAK to exit.

Note that this is not usable with the Standard Development (stddev) kernel.

FILES lists all entries in the File-System. It displays the type (LCFQS), the access right, the
number of links, the number of pages reserved for this entry, its real length and its name.
Each time RCL is pressed, the next entry is displayed.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; FILES - A file-system node entries list
;; FILES fetches all the file-system entries
;; nodes (FSR), gets the status of each (FEN)
;; and display the node type, the access
;; rights, the number of pages allocated, the
;; real entry ;; length and the entry name.

;; When the console output is refreshed by
;; pressing the key RCL, the next entry is
;; displayed

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

FILES:
.LOCAL

;; MMPS executable header.
;;
.BYTE
BLDHEADER FILES.asm$$._length 01 0040

.CODE
;; The process enters here
;; BC contains the global address
;; DE the in and out descriptors
;; HL points to the arguments
;;
;; FSR need to have &FF in D at first
;; call
LD D,FF

forever:
;; HL points to argument page. We use
;; this dummy page allocated to pass
;; the arguments. Because we do not
;; expect some, it is our buffer !
;; This is not nice, but it reduces
;; the space needed.
LD BC,HL

;; Read the file system entries in
;; argument page + 5

LDA 05
ADD BC
MMPS krn.FSR
JR NC,out_FS_END

PUSH HL
LDA 0B
ADD BC
PUSH DE
LD DE,BC
PUSH DE

LD BC,PC
LDA *_*filesSTR
ADD BC
;; Here call the FMTSRING from the run
;; time with in
;; BC the format string
;; DE the formatted string
;; HL the structure to format
CALL FMTSTRING

POP BC
POP DE

;; Restore all registers and write the
;; formatted string to the out descriptor
LD L,1A
MMPS krn.WRI

POP HL
JR forever

out_FS_END:
;; Flush the out descriptor. This is nice
;; if we output to a console, because we
;; will suspend until RCL is pressed. It
;; gives time for user to read the output.
MMPS krn.FLU

;; Return to father with &0000
CLA
STA D
STA E
RET
SBC C

.TEXT
filesSTR:

".N.-.A .B .B .W .S \00"

.END

PROCESS lists all process created. It displays the PID, the process status bits, the priority, the
events queue mask, the FID and the executable name. Each time RCL is pressed, the next
valid process is displayed.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; PROCESS - Display all process created
;; PROCESS try to get the process status
;; (STA) for all process (0..7). If it
;; succeed, the process status bits and
;; and the executable name are displayed.
;; Else, go to next process-id.

;; When the console output is refreshed by
;; pressing the key RCL, the next process
;;s is displayed

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

PROCESS:
.LOCAL

.BYTE
BLDHEADER PROCESS.asm$$._length 01 0040

.CODE
;; program enters here
;; BC contains the global address
;; DE the in and out descriptors
;; HL points to the arguments

;; HL points to argument page. We use
;; this dummy page allocated to pass
;; the arguments. Because we do not
;; expect some, it is our buffer !
;; This is not nice, but it reduces
;; the space needed.
LD BC,HL

;; The first process had pid 0
LD H,00

forever:
;; Prepare for STA, pid in H and BC
;; points to the process structure
LDA H
PUSH A

STI (BC)
MMPS krn.STA
POP A
STA H
DEC BC
;; If carry clear, the process does
;; not exists, so go next
JR NC,nextproc

;; Save all registers
PUSH HL
PUSH BC
PUSH DE

LD DE,BC
LDA 10
ADD DE
LD HL,BC
PUSH DE

LD BC,PC
LDA *_*processSTR
ADD BC
;; Here call the FMTSRING from the run
;; time with in
;; BC the format string
;; DE the formatted string
;; HL the structure to format
CALL FMTSTRING

;; Restore all registers
POP BC
POP DE

;; Write the formatted buffer to the out
;; descriptor
LD L,18
MMPS krn.WRI

POP BC
POP HL

nextproc:
INC H
;; Up to 8 process under MMPS
CP H,08
JR NC,forever

;; Flush the out descriptor. This is nice
;; if we output to a console, because we
;; will suspend until RCL is pressed. It
;; gives time for user to read the output.
MMPS krn.FLU

;; Return to father with &0000
CLA
STA D
STA E
RET
SBC C

.TEXT
processSTR:

".L .P .L .B .L .S \00"

.END

DISPLAY dumps in hexadecimal the content of the entry given as argument. It displays the
name, the offset and 4 bytes from the entry. Each time RCL is pressed, the next 4 bytes are
read and displayed.

.IF INCLUDED?
;; Align on next 64-bytes frontier
.ALIGN: 40
.ELSE
;; Origin does not matter, because code
;; and data are fully relocatable.
.ORIGIN: 40C5
.ENDIF

.CODE

;; DISPLAY - A display file utility for MMPS
;; DISPLAY will dump in hexadecimal the file
;; or the entry named in argument.

;; It reads the file 4 bytes by 4 bytes, and
;; prints the file name, the offset and the
;; 4 bytes in hexadecimal form.

;; When the console output is refreshed by
;; pressing the key RCL, the next 4 bytes
;; are displayed

;; MMPS kernel-jump and macros
;;
.INCLUDE: MMPS.inc

DISPLAY:
.LOCAL

;; MMPS executable header.
;;
.BYTE
BLDHEADER DISPLAY.asm$$._length 01 0040

.CODE
;; The process enters here
;; BC contains the global address
;; DE the in and out descriptors
;; HL points to the arguments
;;
LDA E
PUSH A

;; Get file name to display from the
;; argument page and open this file
;; in read-only mode
LD BC,HL
LD D,04
MMPS krn.OPN
JR C,fileopen

outerr:
;; Set &00 to D and MMPS error code
;; into E and return to father
LD D,00

STA E
POP A
RET

fileopen:
POP A
STA D

;; HL points to argument page. We use
;; this dummy page allocated to pass
;; the arguments. Because we do not
;; expect some, it is our buffer !
;; This is not nice, but it reduces
;; the space needed.
PUSH HL

;; Skip the name. The buffer will start
;; after, so the name, the offset and
;; 4 bytes will be formatted.
LD C,08

skipname:
LDI (HL)
JR Z,formatsp
DEC C
JR C,skipname

formatsp:
LDA \x20 ;; Space character
DEC HL

loopsp:
STI (HL)
DEC C
JR C,loopsp

POP BC
forever:

;; Main loop
LD HL,BC
LDA 1A
ADD BC
PUSH HL

;; Get into HL the current offset in the
;; file pointed by the descriptor E
MMPS krn.TEL

LDA H
STI (BC)
LDA L
STI (BC)

;; Read 4 bytes from descriptor E
LD L,04
MMPS krn.REA
LDA L
POP HL

;; Error or no byte read (L=0), so we
;; expect that is the end-of-file

JR NC,out
JR Z,out

PUSH DE
PUSH HL
PUSH A
LDA 09
ADD HL
PUSH HL
POP DE
LD HL,BC

LD BC,PC
LDA *_*displaySTR
ADD BC
DEC HL
DEC HL
;; Here call the FMTSRING from the run
;; time with in
;; BC the format string
;; DE the formatted string
;; HL the structure to format
CALL FMTSTRING

POP A
POP BC
STA H
SL
RCF
ADC H
ADC 0E
STA L
POP A
PUSH A
STA E
;; Write the formatted string to the out
;; descriptor
MMPS krn.WRI

POP DE
JR forever

out:
LDA D
STA E
;; Flush the out descriptor. This is nice
;; if we output to a console, because we
;; will suspend until RCL is pressed. It
;; gives time for user to read the output.
MMPS krn.FLU

;; Return to father with &0000
CLA
STA D
STA E
RET
SBC C

.TEXT

displaySTR:
":.W .B .B .B .B\00"

.END

The minimal file system embed a run time. This library contains some useful routines:

highTOHEX - &1819
lowTOHEX - &181A

Convert the high or low 4-bits digit of A into a hexadecimal character
0123456789ABCDEF
In:

A contains a 8-bits value
Out:

A contains a hexadecimal character

NEXTARG - &1830

Fetch the space in a string, nulls the space and return a pointer to the first argument.
In:

HL contains address of the string to parse
Out:

BC contains the origin address (HL in)
HL contains the address of the next character after a space.
In he string pointed by BC, the leading space are replaced by a &00.

FMTSTRING - &1850

Format an output buffer according to a format string and arguments.
In:

BC contains the address of format string ended by &00
DE contains the address of the output buffer
HL contains the address of a binary buffer to be formatted

Out:
BC, DE and HL points to the end of their respective buffers
The string is filled in the buffer pointed by DE. The string ends by a &00.

The format string pointed by BC is on the form:
.<format char>.<fc>.<fc>

where <format char> is
. := put a .
- := skip next byte without putting in buffer (equ. to INC HL)
H := put the high digit (bits7-4) in hexa
L := put the low digit (bits3-0) in hexa
B := put the 8-bits byte in hexa
W := put the 16-bits word in hexa
b := put the 8-bits byte in binary
h := put the high digit (bits7-4) in binary
l := put the low digit (bits3-0) in binary
C := put the character
S := put the string until &00 is found
N := put the node entry type, ie, one of 'LCFQS’
A := put the access mode, ie, one of ‘ORWMCE’. Cleared bits are in lower

case

P := put the process bits, ie, one of ‘DOILQPR’ added with a leading ‘K’
while the process has enters a kernel-jump

any other character is copied directly to the formatted buffer.

After each format, the HL register is incremented.

In the minimum file system, 6 executable are present:

STARTER process started by the kernel. A very-very-very-light shell
FILES list all entries present in the file system, type, size, name
PROCESS list all process created into the scheduler, PID, status, FID, name
DISPLAY display in hexadecimal the content of the entry given as argument
DEBUG debug the process given as argument
MAKER copy code from BASIC and create executable header

Some other entry are available to use with DISPLAY and to get some debug information
about the MMPS kernel:

SYSVAR the volatile area of MMPS
SYSMEM the memory of MMPS

MMPS images

Several images are provided within this ZIP; The Standard Development (stddev) or Full
(stdfull) images may be installed in all PC-1500, PC-1500A and PC-2. The 1500A
Development (1500Adev) or 1500A Full (1500Afull) are only workable with a
PC-1500A.

Note that MMPS requires a CE-161 (16Kbytes) extension module.

If you choose the Standard Development (stddev), do the following, in PRO mode:
POKE &7865,&48,&00
NEW

and load the 3 wav with CLOAD M
Images/stddev/mmps-090498-stddev.wav
Images/stddev/mmps-fs+lib-stddev.wav
Images/stddev/mmps-volatile-stddev.wav

This image is really for MMPS kernel development. For a normal usage, the images below
are preferred.

If you choose the Standard Full (stdfull), do the following, in PRO mode:
NEW &4300

and load the 3 wav with CLOAD M
Images/stdfull/mmps-090498-stdfull.wav
Images/stdfull/mmps-fs+lib-stdfull.wav
Images/stdfull/mmps-volatile-stdfull.wav

If you choose the 1500A Development (1500Adev), do the following, in PRO mode:
NEW &5000

and load the 3 wav with CLOAD M
Images/1500Adev/mmps-090498-1500Adev.wav
Images/1500Adev/mmps-fs+lib-1500Adev.wav
Images/1500Adev/mmps-volatile-1500Adev.wav

If you choose the 1500A Full (1500Afull), do the following, in PRO mode:
NEW &4000

and load the 3 wav with CLOAD M
Images/1500Afull/mmps-090498-1500Afull.wav
Images/1500Afull/mmps-fs+lib-1500Afull.wav
Images/1500Afull/mmps-volatile-1500Afull.wav

Always load the 3 wav from the same image. Do not mix them, because it may result
some unrecoverable crash.

License

Copyright 1994-2014 Christophe Gottheimer <cgh75015@gmail.com>

MMPS is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License version 2 as published by the Free Software Foundation. Note that I
am not granting permission to redistribute or modify MMPS under the terms of any later
version of the General Public License.

This program is distributed in the hope that it will be useful (or at least amusing), but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program (in the file "COPYING"); if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

