
MTASK2015
April 2015

A Multi-Task kernel (MT) for
the SHARP PC-1500/A and TRS80 PC-2

Copyright 1992 - 1993 - 2015 - Christophe Gottheimer

MTASK2015 is a Multi-Task kernel (MT) for the SHARP PC-1500/A and TANDY PC-2.

MTASK2015 is copyright 1992-1993-2015 Christophe Gottheimer <cgh750215@gmail.com>

This code is distributed under the terms of the GNU Public License (GPL) version 2.

This version is still in pre-alpha release. It is not fully mature and bugs are present.

+------------------- DISCLAIMER --------------------+
| YOU USE THIS CODE AT YOUR OWN RISK ! I AM NOT |
| RESPONSIBLE FOR ANY DAMMAGE OR ANY DATA LOST OR |
| CORRUPTED BY USING THIS SOFTWARE OR BY USING THE |
| BINARY IMAGES CREATED WITH THIS SOFTWARE WHILE |
| RUNNING THEM ON A SHARP PC-1500/A or TANDY PC-2. |
| BE SURE TO SAVE YOUR IMPORTANT DATA OR PROGRAMS |
| BEFORE LOADING AND RUNNING THE BINARY IMAGES. |
+---+

MTASK2015 is written in assembly language. It was firstly developed directly on a SHARP
PC-1500 with the software XMON.

MTASK2015 requires the lhTools version 0.7.2 or higher to be assembled from the sources.

1/ Presentation

This is my implementation of a small multi-task kernel (MT). I started to develop it in 1992
when I was working on Motorolla 680x0 targets running vxWorks. I feel very funny to try
to go out of the way in this small computer. This was of course possible because the BASIC
ROM was able to divert the interruptions. I read an article in a french computer review
speaking about a small example of this diversion. I adapted it and after I developed several
MT-kernels, with each time more functionalities.

One of the last I developed support an access to the MT-kernel through a BASIC instruction
TASK. This was useful to "speak" with a task without calling an assembly routine interface.

I stopped the development to start another, more complex: A small multi-process operating
system named MMPS (see: http://www.pc1500.com/mmps.html).

Several years ago, I recovered the tapes where the MT-kernel was saved, but I was not able to
reload it or to extract a binary. I still own my written notes. Some weeks ago, finally, I
succeed to extract the binary images with some parts corrupted, but my notes helped me to
rebuild a working kernel.

I also use this work to change some kernel request and add some new ones like the timer.

Content of the package:
COPYING - The GNU GPL v2
README - A small README manual
mk.sh - A shell script to build the mt2015-* binary images
mtask2015.pdf - The whole MT-kernel documentation in PDF
mtask2015.abw - The whole MT-kernel documentation source for AbiWord
mtask2015.asm - The assembly source code of the MT-kernel
mtask2015.inc - Include with all defines for MT-kernel programming
mtfull.asm - The include method for the full image source code
callregs.asm - The assembly source code of the CALLREGS routine
taskbas.asm - The assembly source code of the BASIC instruction TASK
tasktab.asm - The assembly source code task array and other variables
keyboard.asm - The assembly source code of a small keyboard driver
exall.asm - The assembly source code of all examples
exsched.asm - The assembly source code of a small "schedule" task
Images/std/ - Directory with all modules images for standard unit
Images/1500A/ - Directory with all modules images for the PC-1500A
Images/special/- Directory with some others images at specific addresses
Images/ex/ - Directory with all modules images of the examples

Note that for machine a very small amount of memory, images without the BASIC instruction
TASK are provided. This are the reduced images.

To build the Multi-Task Kernel from sources, the lhTools-0.7.2 or higher are required.

2/ Installation

2.1/ Machine requirements

The MT-kernel alone needs more than 2Kb, so it is not possible to use it in PC-1500/TANDY
PC-2 without a memory module. A module of at least 4Kb (CE-151) is mandatory. For the
images with the TASK instruction and the keyboard driver, 2.8Kb is required. Special images
for PC-1500A are provided, because of the different memory scheme; with these images, the
task structures are stored into the dedicated ML area (&7F00..&7F82). Note that standard
images also work into the PC-1500A. For a PC-1500A without any module, refer to CE-151
steps to load and initialize the image. A second image containing the tasks array and variables
is mandatory to use with the PC-1500A images. See 2.3/ or 2.4/ for this specific step.
Warning: Do not try to use the 1500A images inside a PC-1500 or a TANDY PC-2. This
will crash the system !

The keyboard driver needs to be installed into a ROM A02 or higher. If the function PEEK
&E2B9 answers 56, the machine has a good ROM, and full images may be used. Else, the
keyboard driver and the TASK instruction will be not usable; in this case, use the reduced
images. CALLREGS works on all ROMs. Note that the PC-1500A have always the good
ROM.

If a RESET occurs (i.e. a NEW0? :CHECK), the last step 2.5/ need to be done to reactivate
the keyboard driver, but in this case, it is also highly recommended to save our work and
reload the image, to ensure the integrity of Multi-Task Kernel.

Before to load the image, you need to reserve some space outside the BASIC area for the
Multi-Task Kernel. The values given below are the minimum amount of memory required,
but if you expect to run some LM programs, you should also allocate more space to store
them. Be sure to save your work and type the following NEW command according to the
image you expect to use:

• Reduced Image Standard:
CE151: NEW &4880
CE155: NEW &4080
CE158: NEW &2880
CE161/163: NEW &0880

• Reduced Image 1500A: (PC-1500A only !)
CE151: NEW &4800
CE155: NEW &4000
CE158: NEW &2800
CE161/163: NEW &0800

• Full Image Standard:
CE151: NEW &4BA0
CE155: NEW &43A0
CE158: NEW &2BA0
CE161/163: NEW &0BA0

• Full Image 1500A: (PC-1500A only !)
CE151: NEW &4B20
CE155: NEW &4320
CE158: NEW &2B20
CE161/163: NEW &0B20

A final initialization procedure is described in 2/5 for the full images (Standard and 1500A).
This needs to be performed after the full image has been loaded into the memory.

2.2/ Images naming

MTASK2015 is delivered with 2 kinds of images: .wav for audio download with the
CE-150 or CE-162 cassette interface and .bin158 for a serial download with the CE-158
serial interface.

The reduced images come with the MT-kernel and CALLREGS. The full images come with
the TASK command, the keyboard driver, the MT-kernel and CALLREGS.

The images naming is Images/std/mt2015-full-ceMMM.EEE for full images and
Images/std/mt2015-reduced-ceMMM.EEE for the reduced where MMM is the
module (151, 155, 159 or 161 [also for CE-163]), and EEE is .wav for audio
or .bin158 for serial.

The .bin158 are binary images with the CE-158 header included to a download with the
CLOAD M command.

The dedicated images for PC-1500A have the same naming convention, but they are located
in Images/1500A/ directory.
Warning: Do not try to use the 1500A images inside a PC-1500 or a TANDY PC-2. This
will crash the system !

2.3/ Audio download

Connect the PC-1500 to a CE-150 or CE-162 audio cassette interface and plug the audio
jack wire.

After, enter a CLOAD M command and start to play the WAV file. After 3.30 minutes,
MTASK2015 is loaded. See 2.5/ to start MTASK2015.

• When loading the full WAV image, MTASK"2015:Fccc is displayed where ccc is
the module: 151 155 159 or 161.

• When loading the reduced WAV image, MTASK"2015:rccc is displayed where
ccc is the module: 151 155 159 or 161.

If you have installed an image for the PC-1500A, you need also to load the image
Images/1500A/mtask2015-tasktab.wav using CLOAD M to initialize the tasks
array and variables.

• When loading this WAV image, MTASK"2015:TSKTB is displayed

2.4/ Serial download

Connect the PC-1500 to a CE-158 interface and plug the serial wire between the host
computer and the interface.

On host, configure the serial line parameters with 2400 bauds, 8 bits, No parity and 1-bit
stop: 2400/8/N/1.

Switch the CE-158 interface ON and after the PC-1500. Configure the serial parameters and
set the device in input mode:

SETCOM 2400,8,N,1
SETDEV CI
OUTSTAT 0
CLOAD M

Start the transfer on the host PC. After less than 1 minute, MTASK2015 is loaded. See 2.5/ to
start MTASK2015.

If you have installed an image for the PC-1500A, you need also to load the image
Images/1500A/mtask2015-tasktab.bin158 using CLOAD M to initialize the tasks
array and variables.

With the lhTools, the utility lhcom may be used as follow for serial download:
lhcom -s -Y /dev/tty<...>=2400,8,N,1 Images/<...>/mt2015<...>.bin158

2.5/ Initialization

Depending of the images you have loaded, the following steps need to be done to initialize
MTASK2015., but only the full images (Standard or 1500A) need the following steps.

CE-151:
POKE &785B,&47,&FD
POKE &79D1,&24
POKE &79D4,&55

CE-155:
POKE &785B,&3F,&FD
POKE &79D1,&20
POKE &79D4,&55

CE-159:
POKE &785B,&27,&FD
POKE &79D1,&14
POKE &79D4,&55

CE-161 and CE-163:
POKE &785B,&07,&FD
POKE &79D1,&04
POKE &79D4,&55

Warning: Type the POKE’s addresses and values very carefully, because a mistake may crash
the PC-1500 and the whole memory may be corrupted or lost !

Warning: If you have installed an image for the PC-1500A, be sure to have loaded the
mtask2015-tasktab image before doing the steps above !

Be sure to call at least one time the t_TASKINIT routine (see 3/) or a TASK CLEAR (full
images) to properly clear the task structures and some pointers. This need to be done after
loading the MTASK2015 binary, or after a crash or a soft reset (NEW0? CHECK:)

Welcome to MTASK2015 !

3/ Starting the MT-kernel

Before any use after loading MTASK2015, or before working from a clean situation, at call
to t_TASKINIT has to be performed. This clears all the task structures, the internal pointers
and install a relocatable vector for t?KRNREQ useful to develop common task code. This is
simply done by CALL t_TASKINIT where t_TASKINIT is the address defined below
according of the binary image loaded.
For example, to call t_TASKINIT with the CE-155 image: CALL &3FF1
On full images, just do TASK CLEAR

At each Power-OFF, the MT-kernel is halted, and interruption vector is not restored by the
ROM when powering on. So at each Power-ON, a TASK RUN need to be done to restart the
scheduler. The task structures are not affected by this command except for the caller; its task
structure is reinitialized. The relocatable vector for t?KRNREQ is also reinstalled by
t_ARUN. This is simply done by CALL t_ARUN where t_ARUN is the address defined
below according of the binary image loaded.
For example, to call t_ARUN with the CE-159 image: CALL &27F4
With CALLREGS, do a:

A$="000000000000"
CALL &callregs-address,A$

Note that the callregs-address depends of the image installed (see below). For
example, to call t_ARUN using CALLREGS with the CE-161 image:

A$="000000000000"
CALL &07FA,A$

On full images, just do TASK ARUN

On full images, the keyboard driver comes with the key auto repeat, a special OFF to avoid to
replay the step 2.5/ at each Power-ON, and the TASK instruction mapped to the key DEF+O.
This is because the ROM does not fetch the keywords outside some tables. Note that DEF+O
replaces the MERGE command in shortcut, but MERGE is still accessible by typing MERGE.

Depending of the images loaded and the modules inserted, the following routines are located
to different addresses (full and reduced have the same):

t_TASKINIT t_ARUN t?KRNREQ CALLREGS
CE-151: &47F1 &47F4 &47F7 &47FA
CE-155: &3FF1 &3FF4 &3FF7 &3FFA
CE-159: &27F1 &27F4 &27F7 &27FA
CE-161/163: &07F1 &07F4 &07F7 &07FA

In the way to develop and provide common programs with all images of MTASK2015, a
relocatable vector is installed by t_ARUN for t?KRNREQ. The vector is at the address
&79FA. Note that if you use some peripherals, it may safe to call t_ARUN to reinstall the
relocatable vector. Note that CALLREGS or TASK are always safe because they use an
internal call address instead of the relocatable vector.

4/ MT-Kernel requests

When a task requires a MT-kernel services, it should call a MT-kernel request. This is done
by calling the t?KRNREQ entry point with some parameters in the CPU registers, depending
of the request. The register D is loaded with the request id to performed. The others
parameters may be or not optional. At the return from a request, the CARRY is set if it was
successful, or it is cleared if the request failed and the register H contains the error code.

Be careful to always call the t?KRNREQ entry point and never bypass it, else a severe crash
may occur and all data and/or program may be corrupted or lost.

For example, to pause the caller during a number of scheduler ticks (&1FF):
;; BC contains the number of ticks as delay

LD B,&01
LD C,&FF

;; D is loaded with the TASK PAUSE identifier, i.e,
LD D,&0A
CALL t?KRNREQ

;; If CARRY cleared, an error occurred and code is returned in H
JR NC,process-error

4.1/ MT-kernel requests overview

+--------------------- WARNING ---------------------+
| When calling a MT-kernel request, the kernel does |
| not take care of saving the registers. So a value |
| returned into a register may overwrite the origin |
| value even if this register is not used to pass a |
| parameter to the kernel. The caller has the full |
| responsibility of saving its registers before to |
| call a MT-kernel-request. |
+---+

t?KRNREQ:
;; MTASK kernel request - Enters into kernel
;; A, BC, L = <optional arguments>
;; D = <kernel request id>
;; -> RCF, A = <error code>
;; -> SCF, A, BC, L = <returned values>
;; !!!! Registers values are not saved and may be
;; overwritten during
;; !!!! the kernel request work. Caller should care of
;; "pushing" them

&00 :: t?ARUN:
;; ARUN - Register caller and start scheduler.

&01 :: t?:
;; ? - Return <tid> into A

&02 :: t?RUN:
;; RUN - Create and run a new task
;; A = <tid><prio> | <0xF><prio>
;; BC = <stack>
;; HL = <entry>

&03 :: t?END:
;; END : Terminate a task
;; A = <tid> | 0xFF for itself

&04 :: t?STOP:
;; STOP - Suspend task execution
;; A = <tid> | 0xFF for itself

&05 :: t?CONT:
;; CONT - Continue task execution
;; A = <tid>

&06 :: t?NEW:
;; NEW - Change task priority
;; A = <tid> | 0xFF for itself

;; L = <prio>

&07 :: t?LOCK:
;; LOCK - Try to take a lock
;; L = <lockid>

&08 :: t?UNLOCK:
;; UNLOCK - Give a lock
;; L = <lockid>

&09 :: t?LOCKWAIT:
;; LOCK WAIT - Take a lock and wait if not free
;; L = <lockid>

&0A :: t?PAUSE:
;; PAUSE - Sleep task for a delay
;; BC = <delay>

&0B :: t?INPUT:
;; INPUT - Wait for a message
;; BC = <address>
;; L = <length>
;; -> H = <receive-length>
;; -> A = <sender-tid>

&0C :: t?PRINT:
;; PRINT - Send a message to a task
;; BC = <address>
;; L = <length>
;; A = <tid>

&0D :: t?PRINTWAIT:
;; PRINT WAIT - Send a message and wait if receiver is
;; not ready
;; BC = <address>
;; L = <length>
;; A = <tid>

&0E :: t?PRINTINPUT:
;; PRINT INPUT - Send a message and wait for message
;; BC = <address>
;; L = <length>
;; A = <tid>
;; -> H = <receive-length>
;; -> A = <sender-tid>

&0F :: t?GOTO:
;; GOTO - Install event handler
;; BC = <handler>

;; When entering into the handler:
;; >> L = <eventid-receive>
;; >> A = <sender-tid>

&10 :: t?UNGOTO:
;; GOTO - Uninstall event handler

&11 :: t?ON:
;; ON - Set event active
;; L = <eventid>

&12 :: t?OFF:
;; OFF - Reset event active
;; L = <eventid>

&13 :: t?CALL:
;; CALL - Send an event to a task
;; L = <eventid>
;; A = <tid>
;; Note that a task can not call itself

&14 :: t?TIME:
;; TIME - Arm a timer and wake-up the calling task
;; when the delay elapses
;; BC = <delay>

&15 :: t?TIMEEND:
;; TIMEEND - Delete running timer

&16 :: t?WAIT:
;; WAIT - Wait for lock, semaphore, message, event
;; or timeout

&17 :: t?PEEK:
;; PEEK - Wait on a counter semaphore with a lock
;; L = <cntid><locktid>

&18 :: t?POKE:
;; POKE - Signal on a counter semaphore with a lock
;; L = <cntid><locktid>
;; If b7=1 in L, the counter is cleared

&19 :: t?DIM:
;; DIM - Declare a queue
;; BC = <queue>
;; L = <size>

&1A :: t?READ:
;; READ - Read a message from the queue

;; BC = <msg>
;; -> L = <length>

&1B :: t?READWAIT:
;; READWAIT - Read a message from the queue and wait
;; if empty
;; BC = <msg>
;; -> L = <length>

&1C :: t?DATA:
;; DATA - Send a message into a queue
;; BC = <msg>
;; L = <length>
;; A = <tid> | 0xFF for itself

4.2/ MT-kernel error codes

t#ERR_NoSuchKrnReq #240 (&F0)
t#ERR_NoTaskFree #241 (&F1)
t#ERR_TaskBusy #242 (&F2)
t#ERR_NoSuchTask #243 (&F3)
t#ERR_TaskNotInput #244 (&F4)
t#ERR_LockNotOwner #245 (&F5)
t#ERR_UnlockNotOwner #246 (&F6)
t#ERR_HandlerBusy #247 (&F7)
t#ERR_TaskCalling #248 (&F8)
t#ERR_NoSuchQueue #249 (&F9)
t#ERR_QueueBusy #250 (&FA)
t#ERR_QueueEmpty #251 (&FB)
t#ERR_QueueFull #252 (&FC)
t#ERR_TimerRunning #253 (&FD)
t#ERR_TimedOut #254 (&FE)

4.3/ TASK instruction syntax

If the TASK instruction is available, its syntax is the following:
TASK CLEAR
TASK ARUN
TASK ?<var>
TASK RUN <entry>,<stack>[,<prio>[,<tid>]];<var>
TASK END <tid>
TASK STOP <tid>
TASK CONT <tid>
TASK NEW <prio>[,<tid>]
TASK PAUSE <delay>
TASK LOCK <lockid>
TASK LOCK WAIT <lockid>
TASK UNLOCK <lockid>
TASK INPUT <var$>
TASK PRINT <tid>,<var$>
TASK PRINT WAIT <tid>,<var$>
TASK PRINT INPUT <tid>,<var$>
TASK GOTO [<handler>]
TASK ON <eventid>
TASK OFF <eventid>
TASK CALL <eventid>,<tid>
TASK TIME [<delay>]
TASK WAIT
TASK POKE CLS <lockid>,<cntid>
TASK POKE <lockid>,<cntid>
TASK PEEK <lockid>>,<cntid>
TASK DIM <queue>,<size>
TASK READ WAIT <var$>
TASK READ <var$>
TASK DATA <tid>,<var$>

If the priority <prio> is not fixed when calling TASK RUN, the default priority 3 is
assumed by the MT-kernel.

The values for <tid>, <prio>, <eventid>, <lockid>, <cntid> are from 0 to 7. For
<tid>, the value &FF relates the calling task id.

The queue size is a number from 6 to 255. The kernel “eats” 5 bytes for its internal
operations. So in a queue of 20 bytes, the biggest message size will be 15 bytes.

If an error occurs will calling the MT-kernel-request with TASK, the normal error handling is
assumed. The BASIC will show ERROR eee where eee is the decimal error code listed in
step 4.2/.

4.4/ CALLREGS

The routine CALLREGS provides an “enhanced” call extension with register values passing
and retrieving. The routine CALLREGS is designed to call only the MT-kernel-request.

To call a MT-kernel-request with CALLREGS, fill a string variable as follow:
var$="aabbccddhhll"

where:
aa is a 8-bits hexdigits to be loaded in A
bb is a 8-bits hexdigits to be loaded in B
cc is a 8-bits hexdigits to be loaded in C
dd is a 8-bits hexdigits to be loaded in D
hh is a 8-bits hexdigits to be loaded in H
ll is a 8-bits hexdigits to be loaded in L

The value dd is the MT-kernel request id. If aa contains the task id (TID) concerned by the
MT-kernel request, &FF always relates the calling TID.

Finally calls the CALLREGS routine with a:
CALL callregs-addr,var$

At the return, the var$ contains "a'b'c'h'l'" where a' b' c' h' and l' are the
returned values from the registers A B C H and L. If an error occurred during the MT-kernel
request (CARRY cleared), var$ is loaded with "#ee" where ee is the hexadecimal error
code listed in 4.2/.

For example, to pause (&0A) for a ticks value of &123, BC has be loaded with the delay, do
D$="0001230A0000"
CALL callregs,D$
D$

and you see:
"0001230000"

Depending of the images loaded and the modules inserted, the routine CALLREGS is located
to different addresses (full and reduced have the same):

CALLREGS
CE-151 &47FA
CE-155 &3FFA
CE-159 &27FA
CE-161/163 &07FA

5 MT-kernel requests reference

+--------------------- WARNING ---------------------+
| When calling a MT-kernel request, the kernel does |
| not take care of saving the registers. So a value |
| returned into a register may overwrite the origin |
| value even if this register is not used to pass a |
| parameter to the kernel. The caller has the full |
| responsibility of saving its registers before to |
| call a MT-kernel-request. |
+---+

In the CALLREGS syntax, the values shown as ** are not relevant.

5.1/ t?ARUN

Starts the scheduler, and initialize the task structure for the calling task. Called from BASIC,
it will “create” the BASIC task. Also callable by CALL t_ARUN.

Syntax:
LD D,&00
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK ARUN

CALLREGS:
A$="******00****"
CALL CALLREGS;A$

5.2/ t?TID

Get the caller TID (0..7),

Syntax:
LD D,&01
CALL t?KRNREQ

Output: A contains the current TID.

Error: None

BASIC:
TASK ?<var>

CALLREGS:
A$="******01****"
CALL CALLREGS;A$
A$ shows "0t********" with t the TID.

5.3/ t?RUN

Create a new task. The task entry point should set in HL, the stack is BC, and the priority in A
[b3..b0]. It is possible to request a specific TID in A[b7..b4], or to let the kernel
assigns the TID with &F in A[b7..b4]. If the created task has a higher priority than the
caller, it takes the hand immediately. If the code of the task ends with a RET instruction, the
task will be terminated by the MT-kernel when executing the return.

Syntax:
LD BC,<stack>
LD HL,<entry>
LDA <tid><prio> | &F<prio>
LD D,&02
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, A contains the created TID, else H contains the error code.

Error:
t#ERR_NoTaskFree No more room is task array to create the new task
t#ERR_TaskBusy The TID given in L[b7..b4] is already used

BASIC:
TASK RUN <entry>,<stack>[,<prio>[,<tid>]];<var>

The TID is returned to <var>. If <prio> is not given, TASK set it to 3.

CALLREGS:
A$="tpsspp02ppcc"
CALL CALLREGS;A$
A$ shows "0t********" with t the TID.

5.4/ t?END

Terminates the task specified by TID. If TID is &FF, the calling task is terminated. If a task
terminates itself, t?END never returns.

Syntax:
LDA <tid> | &FF
LD D,&03
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists

BASIC:
TASK END <tid>

CALLREGS:
A$="0t****03****"
CALL CALLREGS;A$

5.5/ t?STOP

Stops the task specified by TID. If TID is &FF, the calling task is stopped. The task still
exists, but the scheduler will never start it, until a t?CONT is done for this task.

Syntax:
LDA <tid> | &FF
LD D,&04
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists

BASIC:
TASK STOP <tid>

CALLREGS:
A$="0t****04****"
CALL CALLREGS;A$

5.6/ t?CONT

Continues (restart) the task specified by TID. A task can not perform a t?CONT to itself.

Syntax:
LDA <tid>
LD D,&05
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists

BASIC:
TASK CONT <tid>

CALLREGS:
A$="0t****05****"
CALL CALLREGS;A$

5.7/ t?NEW

Change the priority of a task specified by TID. The new priority is in L in the range 0..7.
The priority 0 is the highest priority and 7 is the the lowest. The scheduler starts the task with
the highest priority until they suspend. After the tasks of less priority, and so on, until the
tasks of the lowest priority. If the TID is &FF, the priority of the calling task is changed.

Syntax:
LDA <tid> | &FF
LD L,<prio>
LD D,&06
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists

BASIC:
TASK NEW <prio>[,<tid>]

CALLREGS:
A$="0t****06**0p"
CALL CALLREGS;A$

5.8/ t?LOCK

Tries to takes the ownership of a lock. The lockid is in range 0..7. If the lock is free, the
calling task becomes the owner, else the request returns an error. When a task terminates, the
locks are “freed” by the kernel, if the task owns some locks.

Syntax:
LD L,<lockid>
LD D,&07
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_LockNotOwner The lock is owned by another task.

BASIC:
TASK LOCK <lockid>

CALLREGS:
A$="******07**0l"
CALL CALLREGS;A$

5.9/ t?UNLOCK

Tries to gives up the ownership of a lock. If the lock is owned by the task, it is “freed” and
the next waiting task may become owner. If the task is not owner of the lock, an error is
returned. When a task terminates, the locks are “freed” by the kernel, if the task owns some
locks.

Syntax:
LD L,<lockid>
LD D,&08
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_UnlockNotOwner The lock is owned by another task.

BASIC:
TASK LOCK <lockid>

CALLREGS:
A$="******08**0l"
CALL CALLREGS;A$

5.10/ t?LOCKWAIT

Tries to takes the ownership of a lock, and waits if the lock is already own by another task. If
the lock is free, the calling task becomes the owner, else the calling task waits until the owner
task frees the lock. When a task terminates, the locks are “freed” by the kernel, if the task
owns some locks.

Syntax:
LD L,<lockid>
LD D,&09
CALL t?KRNREQ

JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_LockNotOwner The lock is owned by another task.
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK LOCK WAIT <lockid>
Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="******09**0l"
CALL CALLREGS;A$

5.11/ t?PAUSE

Delays the calling task for the amount of ticks given by BC. Until the ticks counter is
decremented to 0, the task is no more scheduled.

Syntax:
LD BC,<delay>
LD D,&0A
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK PAUSE <delay>

CALLREGS:
A$="**bbcc0A****"
CALL CALLREGS;A$

5.12/ t?INPUT

The task goes in the INPUT-STATE, and wait infinitely for a synchronous message. The
buffer to receive the message is in BC and L is maximum length for the message. When a
another task sends a synchronous message with t?PRINT, the tasks returns with H the length
of the message received, and A the TID of the sender. The message is copied by the kernel
from the “sender-space” to the “receiver-space”.

Syntax:
LD BC,<buffer>
LD L,<length>

LD D,&0B
CALL t?KRNREQ

Output: When returning, H contains the length of the message received and A the TID of the
sender.

Error: None

BASIC:
TASK INPUT <var$>
Note: The TASK instruction never returns the sender TID.

CALLREGS:
A$="**bbcc0B**ll"
CALL CALLREGS;A$
A$ shows "0tbcchhll" with t the TID and hh the received length.

5.13/ t?PRINT

Sends a synchronous message pointed by BC of the length L to the task specified by TID in
A. This task should be in INPUT-STATE, else an error is returned. The message is copied by
the kernel from the “sender-space” to the “receiver-space”. A task can not send a
synchronous message to itself.

Syntax:
LD BC,<buffer>
LD L,<length>
LD A,<tid>
LD D,&0C
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists
t#ERR_TaskNotInput The receiver task is not in state INPUT-STATE

BASIC:
TASK PRINT <tid>,<var$>

CALLREGS:
A$="0tbbcc0C**ll"
CALL CALLREGS;A$

5.14/ t?PRINTWAIT

Sends a synchronous message pointed by BC of the length L to the task specified by TID in
A. This task should be in INPUT-STATE, else the calling task waits until the remote enters
into INPUT-STATE. The message is copied by the kernel from the “sender-space” to the
“receiver-space”. A task can not send a synchronous message to itself.

Syntax:
LD BC,<buffer>
LD L,<length>
LD A,<tid>
LD D,&0D
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK PRINT WAIT <tid>,<var$>
Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="0tbbcc0D**ll"
CALL CALLREGS;A$

5.15/ t?PRINTINPUT

Sends a synchronous message pointed by BC of the length L to the task specified by TID in
A. This task should be in INPUT-STATE, else the calling task waits until the remote enters
into INPUT-STATE. The message is copied by the kernel from the “sender-space” to the
“receiver-space”. A task can not send a synchronous message to itself. The caller task
immediately enters into the INPUT-STATE ready to receive a synchronous message. The
kernel insures that this request is performed as an atomic operation. So, there a no risk to
loose some synchronous messages even the receiver task has a higher priority than the
sender. The tasks returns with H the length of the message received, and A the TID of the
sender.

Syntax:
LD BC,<buffer>
LD L,<length>
LD A,<tid>
LD D,&0E
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful and H contains the length of the
message received and A the TID of the sender, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK PRINT INPUT <tid>,<var$>
Note: The TASK instruction never returns the sender TID.
Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="0tbbcc0E**ll"
CALL CALLREGS;A$
A$ shows "0tbcchhll" with t the TID and hh the received length.

5.16/ t?GOTO

Install an event handler pointed by BC for the calling task. The event mask is reset to &00 (no
event) with this request. If a handler is already installed, the request returns an error. If a task
send a event to this task, and if the event is enabled, the handler is called. When entering into
the handler, the event is in L and H and the TID of the sender is in A. The task enters into the
handler even it is stopped, waiting, paused or in INPUT-STATE, but not if it is already
handling an event. A task can not send an event to itself.

Syntax:
LD BC,<handler>
LD D,&0F
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_HandlerBusy The handler is already sets

BASIC:
TASK GOTO <handler>

CALLREGS:
A$="**bbcc0F****"
CALL CALLREGS;A$

5.17/ t?UNGOTO

Remove the event handler for the calling task. The event mask is reset to &00 (no event) with
this request.

Syntax:

LD D,&10
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK GOTO

CALLREGS:
A$="******10****"
CALL CALLREGS;A$

5.18/ t?ON

Enable the event id given by L. The event id is in range 0..7. This request is only effective
if a handler is installed.

Syntax:
LD L,<eventid>
LD D,&11
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK ON <eventid>

CALLREGS:
A$="******11**0l"
CALL CALLREGS;A$

5.19/ t?OFF

Disable the event id given by L. The event id is in range 0..7. This request is only effective
if a handler is installed.

Syntax:
LD L,<eventid>
LD D,&12
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK OFF <eventid>

CALLREGS:
A$="******12**0l"
CALL CALLREGS;A$

5.20/ t?CALL

Sends the event specified by L to the task specified by TID in A. To enter into the handler,
the receiver task should have installed a handler, enabled the event L and not be currently
handling. A task can not send an event to itself.

Syntax:
LD L,<eventid>
LD A,<tid>
LD D,&13
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchTask No task with the given TID exists
t#ERR_TaskHandling The receiver task is already entered into a handler

BASIC:
TASK CALL <eventid>,<tid>

CALLREGS:
A$="0t****13**ll"
CALL CALLREGS;A$

5.21/ t?TIME

Arms the timer delay of the calling task for the amount of ticks given by BC. When the timer
elapses, the task is “awaken” if it was waiting (t?PRINTWAIT, t?PRINTINPUT, t?
LOCKWAIT, t?READWAIT, t?WAIT, t?PEEK), the CARRY is cleared and the error
t#ERR_TimedOut is filled in H. If a timer is already running, an error is returned.

Syntax:
LD BC,<delay>
LD D,&14
CALL t?KRNREQ
JR NC,noerror

Output:If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_TimerRunning A timer is already armed for the task

BASIC:
TASK TIME <delay>

CALLREGS:
A$="**bbcc14****"
CALL CALLREGS;A$

5.22/ t?TIMEEND

Kill the timer for the current task if one was running.

Syntax:
LD D,&15
CALL t?KRNREQ

Output: None

Error: None

BASIC:
TASK TIME

CALLREGS:
A$="******15****"
CALL CALLREGS;A$

5.23/ t?WAIT

Waits infinitely until the caller task is awaken by a timer or by a t?UNLOCK, t?DATA, or
t?POKE request. When the timer elapses, the task is “awaken” if it was waiting (t?
PRINTWAIT, t?PRINTINPUT, t?LOCKWAIT, t?READWAIT, t?WAIT, t?PEEK), the
CARRY is cleared and the error t#ERR_TimedOut is filled in H. If the task is waken by a
request, the CARRY is set.

Syntax:
LD D,&16
CALL t?KRNREQ
JR C,handle_request
CP H,t#ERR_TimedOut
JR Z,handle_timeout

Output:If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK WAIT
Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="******16****"
CALL CALLREGS;A$

5.24/ t?PEEK

Waits on a counter semaphore countid associated with a lock lockid specified by L. The
lockid and the countid are in range 0..7. The countid is specified by the bits 6..4 of L and
the lockid by the bits 2..0. The task tries to own the lock lockid when entering into t?
PEEK. If the lock may be owned, and the counter semaphore countid is not 0, the task returns
from the request with the ownership of the lock, and the counter is decremented by 1. If the
counter is 0, the lock is freed, and the task waits until the counter become not null. If the lock
is owned by another task, the calling task waits for the ownership of the lock. If a timer
elapses during t?PEEK, the request is interrupted, and it returns with the CARRY cleared and
the error code t#ERR_TimedOut into H.

Syntax:
LD L,<countid><lockid>
LD D,&17
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK PEEK <lockid>,<countid>
Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="******17**cl"
CALL CALLREGS;A$

5.25/ t?POKE

Signal the counter semaphore countid associated with a lock lockid specified by L. The lockid
and the countid are in range 0..7. The countid is specified by the bits 6..4 of L and the
lockid by the bits 2..0. The task should own the lock lockid when entering into t?POKE.

The counter is incremented by 1 and the lock is freed. If the task is not owner of lock, an
error is returned. If the bit 7 in L is set to 1, the counter is reset to 0 and no signal is sent.
This is useful to initialize the counters.

Syntax:
LD L,<countid><lockid>
LD D,&18
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_LockNotOwner The lock is owned by another task.

BASIC:
TASK POKE [CLS] <lockid>,<countid>
Note: CLS clears the counter instead of signal it.

CALLREGS:
A$="******18**cl"
CALL CALLREGS;A$

5.26/ t?DIM

Declares the queue pointed by BC of the length L for the calling task. The length should be at
least 6, because the kernel uses 4 bytes for its pointers, and each messages use 1 byte for its
length. If the queue is already declared, an error is returned.

Syntax:
LD BC,<buffer>
LD L,<length>
LD D,&19
CALL t?KRNREQ
JR NC,error_handler

Output: If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_QueueBusy The queue is already installed
t#ERR_QueueFull The queue length is too small (<6)

BASIC:
TASK DIM <queue>,<length>

CALLREGS:
A$="**bbcc19**ll"

CALL CALLREGS;A$

5.27/ t?READ

The task tries to read an asynchronous message from its queue. The buffer to receive the
message is in BC. If a message could be read from the queue, it is copied in the space pointed
by BC and the length is returned into L. If the no message is present in the queue, an error is
returned. The queue is anonymous.

Syntax:
LD BC,<buffer>
LD D,&1A
CALL t?KRNREQ

Output: If the CARRY is set, the request was successful and L contains the length of the
message read, else H contains the error code.

Error:
t#ERR_QueueEmpty There are no message in the queue

BASIC:
TASK READ <var$>

CALLREGS:
A$="**bbcc1A****"
CALL CALLREGS;A$
A$ shows "**bbcc**ll" with ll the received length.

5.28/ t?READWAIT

The task tries to read an asynchronous message from its queue. The buffer to receive the
message is in BC. If a message could be read from the queue, it is copied in the space pointed
by BC and the length is returned into L. If the no message is present in the queue, the task
waits until a message is sent (t?DATA) or until a timer elapses. The queue is anonymous.

Syntax:
LD BC,<buffer>
LD D,&1B
CALL t?KRNREQ

Output: If the CARRY is set, the request was successful and L contains the length of the
message read, else H contains the error code.

Error:
t#ERR_TimedOut A timer is elapsed, and the request is interrupted

BASIC:
TASK READ WAIT <var$>

Note: When a timer elapses, the ERROR 254 is raised in BASIC.

CALLREGS:
A$="**bbcc1B****"
CALL CALLREGS;A$
A$ shows "**bbcc**ll" with ll the received length.

5.29/ t?DATA

Sends the asynchronous message pointed by BC of the length L to the task specified by TID
in A. If the receiver task has no queue, or if there are not enough space in the queue to store
the message, an error is returned. On each message, the kernel adds 1 byte for the length
when storing it in the queue.

Syntax:
LD BC,<buffer>
LD D,&1C
CALL t?KRNREQ
JR NC,error_handler

Output:If the CARRY is set, the request was successful, else H contains the error code.

Error:
t#ERR_NoSuchQueue The task has no queue
t#ERR_QueueFull There are no space in the queue for the message

BASIC:
TASK DATA <tid>,<var$>

CALLREGS:
A$="0tbbcc1C**ll"
CALL CALLREGS;A$

6/ Examples

The examples described in this chapter are all given as source in the mtask2015/ directory.
Each memory module has two images built for it address scheme. Use Images/ex/
exall-ceMMM.wav or Images/ex/exsched-ceMMM.wav for an audio download or
Images/ex/exall-ceMMM.bin158 or Images/ex/exsched-ceMMM.bin158 for
a serial download.

6.1/ exall.asm

The 7 examples shown is this source show some inter-tasks interactions. They are designed to
be played with the BASIC instruction TASK, but CALLREGS is fully usable.

In this chapter, we assume that the images are for a CE-159 module (address from
&2000..&47FF). We use the memory area from &4000..&47FF as stack and queue area.
We also assume that the scheduler is reinitialized after each example by a CALL
t_TASKINIT.

6.1.1/ Flip-flop the II indicator using t?PAUSE

ex1 is at the address &2C00

ex1:
;; Flip-flop the LCD indicator II

LDA (HIGHLCDFLAG)
XOR &20
STA (HIGHLCDFLAG)

;; Pause task for a delay of &80 ticks
LD B,&00
LD C,&80
LD D,t?PAUSE
CALL t?KRNREQ
JR ex1

In this example, the task does a flip-flop with LCD indicator II. It performs a t?PAUSE for
&0080 ticks, and inverse the LCD indicator.

To start it, do:
BASIC: TASK RUN &2C00,&47FF,2;T

When returning, the variable T should be 1. The flip-flop starts.

CALLREGS: A$="F247FF022C00"
CALL &27FA,A$
A$ -> shows: "0147F37844"

6.1.2/ Send HELLO to BASIC task with PRINT

ex3 is at the address &2C20

ex3:
LD BC,PC
LDA *_*ex3hello
ADD BC

;; Send the message pointed by BC of length L
LD L,&05
LDA &00
LD D,t?PRINTWAIT
CALL t?KRNREQ
JR ex3

In this example, the task tries continuously to send the message "HELLO" to task of TID 0
(the BASIC task).

To start it, do:
BASIC: TASK RUN &2C20,&47FF,2;T

When returning, the variable T should be 1.
TASK INPUT H$
H$ shows "HELLO"
Doing a t?INPUT will receive the message

CALLREGS: A$="F247FF022C20"
CALL &27FA,A$
A$ -> shows: "0147F37844"
A$="0076800B0010"
A$ -> shows: "0176800510"
H$ -> shows: "HELLO"

6.1.3/ INPUT a message and return in lowercase

ex4 is at the address &2C40

ex4:
;; Wait for incoming messages
;; BC points to buffer, L is the max length

LD B,&7B
LD C,&60
LD L,&20
LD D,t?INPUT
CALL t?KRNREQ

;; Save sender TID and received length
PUSH A
PUSH BC
LDA H
DEC A

STA L
_xor20loop:

;; Xor the bit5 (&20). So exchange upper/lower
LDA (BC)
XOR &20
STI (BC)
DJC _xor20loop
PUSH HL

;; Do a delay before sending back the message
LD B,&02
LD C,&00
LD D,t?PAUSE
CALL t?KRNREQ

;; BC points to the message to send
;; L is the length
;; A the TID

POP HL
POP BC
LDA H
STA L
POP A
LD D,t?PRINTWAIT
CALL t?KRNREQ
JR ex4

In this example, the task waits for a message on t?INPUT, inverts the bit 5 of all bytes of the
message and returns it to sender. A call to t?PAUSE is also done to illustrate the INPUT-
STATE of the caller.

To start it, do:
BASIC: TASK RUN &2C40,&47FF,3;T

When returning, the variable T should be 1.
H$="HeLLo-WoRLD"
TASK PRINT INPUT 1,H$
H$ shows "hEllO-wOrld"

CALLREGS: A$="F347FF022C40"
CALL &27FA,A$
A$ -> shows: "0147F37844"
H$="HeLLo-WoRLD"
A$="0176800B0010"
A$ -> shows: "0176801010"
H$ -> shows: "hEllO-wOrld"

6.1.4/ Handle and beep on event 5

ex5 is at the address &2C80

ex5:
LD BC,PC
LDA *_*__handler
ADD BC

;; Install the event handler pointed by BC
LD D,t?GOTO
CALL t?KRNREQ

;; Enable the event 5
LD L,&05
LD D,t?ON
CALL t?KRNREQ

;; Stop me
LDA &FF ; myself
LD D,t?STOP
CALL t?KRNREQ
RET

__handler:
;; In the handler:
;; >> H and L the event
;; >> A the sendert TID

DI
CALL BEEP1
EI
RET

In this example, the task install its event handler with t?GOTO, enable the event 5 with t?
ON and stops itself. When a task send the event 5 to this task (t?CALL), a beep is eared. If
another event is nothing no beep is eared.

To start it, do:
BASIC: TASK RUN &2C80,&47FF,1;T

When returning, the variable T should be 1.
TASK CALL 5,1
A beep is done.
TASK CALL 2,1
No beep.

CALLREGS: A$="F147FF022C80"
CALL &27FA,A$
A$ -> shows: "0147F37844"
A$="010000130005"
A beep is done.
A$="010000130002"
No beep.

6.1.5/ Read time and beep when mm is 0

ex6 is at the address &2CC0

ex6:
;; We should insure the re-entrance of
;; the XREG register because this
;; register is used for arguments,
;; computation, save it into our stack

LD B,<XREG
LD C,>XREG
LD L,&07

;; The save/restore loop should be done
;; with interruptions disabled

DI
pushXREGloop:

LDA (BC)
PUSH A
CLA
STI (BC)
DJC pushXREGloop

;; Call TIME function
CALL &E5B4 ; TIME
DEC BC
DEC BC
DEC BC

;; Get the minutes
LDI (BC)
INC BC
STA H
LD L,&07

;; Restore the XREG register from stack
popXREGloop:

POP A
STD (BC)
DJC popXREGloop
EI

;; Re-enable the interruptions. From
;; here, could be rescheduled

LDA H
;; Check if digit of Minute is 0

BIT 0F
JR NZ,notMM=00
CALL BEEP1

notMM=00:
;; Pause task for a delay of &40 ticks

LD B,&00
LD C,&40
LD D,t?PAUSE
CALL t?KRNREQ

JR ex6

In this example, the task reads the time periodically and beeps while the minute digit is 0.
This programs shows also how to protect against reentry of XREG area (&7A00).

To start it, do:
BASIC: TASK RUN &2CC0,&47FF,1;T

When returning, the variable T should be 1.
Look for TIME value and when time is MMDDHH:M0ss, a beep done.

CALLREGS: A$="F147FF022CC0"
CALL &27FA,A$
A$ -> shows: "0147F37844"
When returning, the variable T should be 1.
Look for TIME value and when time is MMDDHH:M0ss, a beep done.

6.1.6/ Wait for counter 7 on lock 6 and beep when signaled

ex7 is at the address &2D00

ex7:
;; Wait for counter 7 on lock 6

LD L,&76
LD D,t?PEEK
CALL t?KRNREQ

;; Signaled. Do a beep
CALL BEEP1
JR ex7

In this example, the task waits for the counter semaphore 7 is signaled. The semaphore is
associated to the lock 6.

To start it, do:
BASIC: TASK LOCK 6

TASK POKE CLS 6,7
The BASIC task takes the lock 6, clears the count 7. The lock 6 is “free”.
TASK RUN &2D00,&47FF,1;T
When returning, the variable T should be 1.
The task is waiting in t?PEEK.
TASK LOCK 6
TASK POKE 6,7
A beep is done.

CALLREGS: A$="000000070006"
CALL &27FA,A$
A$="0000001800F6"
CALL &27FA,A$
A$="F147FF022D00"

CALL &27FA,A$
A$ -> shows: "0147F37844"
A$="000000070006"
CALL &27FA,A$
A$="000000180076"
CALL &27FA,A$
A beep is done.

6.1.7/ Try to send WORLD with DATA, arm a TIME and WAIT

ex8 is at the address &2D20

ex8:
LD BC,PC
LDA *_*ex8world
ADD BC

;; Send the message pointed by BC of length L
;; to the TID 0

LD L,&05
LDA &00
LD D,t?DATA
CALL t?KRNREQ

;; Arm a timer of &200 ticks
LD B,&02
LD C,&00
LD D,t?TIME
CALL t?KRNREQ

;; Do a wait
LD D,t?WAIT
CALL t?KRNREQ

;; Exit from wait with CARRY set
;; Awaken by a t?UNLOCK, t?DATA, t?POKE

JR C,ex8beep
;; CARRY cleared and timer elapsed ?

CP H,t#ERR_TimedOut
JR NZ,ex8

;; Yes: Flip-flop the LCD indicator G
LDA (LOWLCDFLAG)
XOR &02
STA (LOWLCDFLAG)
JR ex8

ex8beep:
;; Awaken: do a beep

CALL BEEP1
JR ex8

.TEXT
ex8world:

"WORLD"

In this example, the task send "WORLD" with t?DATA to the BASIC task, arm a timer (t?
TIME) and wait (t?WAIT). If the timer elapses, the task flip-flop the LCD indicator G. If the
t?WAIT exists with success, a beep is done.

To start it, do:
BASIC: TASK RUN &2D20,&47FF,1;T

When returning, the variable T should be 1.
The task is waiting in t?WAIT. After a couple of seconds, see the G changes.
TASK LOCK 6
TASK UNLOCK 6
A beep is done.
TASK DIM &4700,&20
TASK READ D$
A$ -> shows: "WORLD"

CALLREGS: A$="F147FF022D00"
CALL &27FA,A$
A$ -> shows: "0147F37844"
The task is waiting in t?WAIT. After a couple of seconds, see the G changes.
A$="000000070006"
CALL &27FA,A$
A$="000000080076"
CALL &27FA,A$
A beep is done.
A$="000000070006"
CALL &27FA,A$
A$="000000180076"
CALL &27FA,A$

6.2/ exsched.asm

The example described here is a small schedule-reminder. The task waits for a message
defining an alarm, and when the time is reached, the message programmed is show to LCD
and 5 beeps are done.

The alarm is send as asynchronous message (t?DATA) and its format is: "HhMm CCCCC"
where Hh is the hour and Mm the minutes of the alarm. When the alarm elapses, the message
CCCCC is printed to the LCD. If the alarm programmed is already past, the reminder is done
immediately.

Imagine that the current time is 17h40m. A new alarm, ALARM is scheduled for 17h42m.
To start it, do:
exsched is at the address &2E00

BASIC: TASK RUN &2E00,&47FF,0;T
When returning, the variable T should be 1.
The task is waiting in t?READWAIT.

A$="1742 ALARM"
TASK DATA 1,A$
Poll for TIME. At mmdd17.42ss, the message " ALARM" is shown on
LCD and 5 beeps are done.

CALLREGS: A$="F047FF022E00"
CALL &27FA,A$
A$ -> shows: "0147F37844"
The task is waiting in t?READWAIT.
H$="1742 ALARM"
A$="0176801C000A"
CALL &27FA,A$
A$="0176801B0A"
Poll for TIME. At mmdd17.42ss, the message " ALARM" is shown on
LCD and 5 beeps are done.

The source code shown below is exsched.asm

.INCLUDE: mtask2015.inc

.CODE

.COMMENT: "A schedule-reminder task. Copyright 2015 Christophe Gottheimer
<cgh75015@gmail.com>

schednbtime: .EQU #10

;; This the schedule-reminder task.
;; The aim of this program is receive some alarms or reminders and to perform
;; some actions when the alarm time is reached.
;; The time checked is hour and minute. A action is a space to print the 5
;; characters of the message to the LCD, or a MT-kernel-request to call, with
;; its arguments: The MT-kernel-request may be one of t?CONT t?PRINT t?CALL or
;; t?DATA.
;; To program an alarm, a message of 10 characters has to be sent to the task
;; with a t?DATA. The format of the message is:
;; "HHhhMMmm ccccc" where HHhhMMmm is the time of the alarm in ASCII, and
;; ccccc is the message to be printed at alarm time.
;; "HHhhMMmmkabchl" where HHhhMMmm is the time of the alarm in ASCII, k is
;; the MT-kernel-request in binary and a b c h l are the
;; binary values to fill into the registers D A BC HL
;; To start the task with TASK:
;; TASK RUN &SCHED,<stack>,1;T
;; To send an alarm at 21:45 to remind to go to sleep:
;; T$="2145 SLEEP"
;; TASK DATA T,T$
;; At 21:45, 5 beeps and message SLEEP will be displayed

.ALIGN: 0100

SCHED:
;; First start. Clear the alarm array: 10 alarms x 8 bytes
LD B,<schedtab
LD C,>schedtab
LD L,[-1][*8]schednbtime
LDA &FF

schedr0loop:
STI (BC)
DJC schedr0loop

;; Declare the queue for incoming alarm messages
LD B,<schedqueue
LD C,>schedqueue
LD L,&20
LD D,t?DIM
CALL t?KRNREQ

schedloop:
;; Loop on TIME and WAIT. Arm TIME and perform a READ WAIT
LD B,&00
LD C,&40
LD D,t?TIME
CALL t?KRNREQ

LD B,<schedmsg
LD C,>schedmsg
LD D,t?READWAIT
CALL t?KRNREQ
;; No error (SCF), an incoming message is present in the queue
JR C,schedread

;; Error! If Timed-out, its time to check for past-due alarms
;; Other errors, just return to main loop
CP H,t#ERR_TimedOut
JR NZ,schedloop

schedtime:
;; To read the TIME (&E5B4), the task need to insure the XREG
;; re-entrance. To do that, the task save the current XREG
;; into its stack, read the TIME, save the bytes Hh and Mm,
;; restore the XREG. To be sure to work safe, the interruptions
;; are disabled during the save..read..restore steps
LD B,<XREG
LD C,>XREG
LD L,&07
;; Disable the interruptions
DI

schedtmloop1:
;; Save XREG into stack
LDA (BC)
PUSH A
CLA
STI (BC)
DJC schedtmloop1
;; Read the current time
CALL &E5B4
DEC BC
DEC BC
DEC BC
;; Save Mm and Hh
LDD (BC)
STA (schedMN)
LDI (BC)
STA (schedHR)
;; Restore XREG from stack
INC BC
INC BC
LD L,&07

schedtmloop2:
POP A
STD (BC)
DJC schedtmloop2
;; Re-enable the interruptions
EI

;; Check for past-due alarms
LD B,<schedtab
LD C,>schedtab
LD L,[-1]schednbtime

schedtimeloop:
LDI (BC)
;; &FF if no alarm entry
CPA &FF
JR Z,schednexttime
;; If (hour < Hh) or ((hour = Hh) and (minute <= Mm))
;; the alarm is reached
CPA (schedHR)
JR NC,schedelapsed
JR NZ,schednexttime
LDA (BC)
CPA (schedMN)
JR NC,schedelapsed
JR Z,schedelapsed

schednexttime:
;; Skip to the next alarm
LDA &07
ADD BC
DJC schedtimeloop
;; No more alarm, return to main loop
JR schedloop

schedelapsed:
INC BC
LDA (BC)
;; If it is a space, display the 5 characters message after
CPA $:space
JR NZ,scheddokrnreq
PUSH BC
PUSH HL
;; Display " ccccc" and play 5 beeps
LD HL,BC
LD C,&06
CALL &ED3B
CALL BEEP1
CALL BEEP1
CALL BEEP1
CALL BEEP1
CALL BEEP1
POP HL
POP BC

schedackdonexttime:
DEC BC
DEC BC
;; Clear the alarm
OR (BC),&FF
INC BC
;; Check for the next alarm
JR schednexttime

scheddokrnreq:
;; Check for valid MT-kernel-request
CPA t?CONT
JR Z,scheddo
CPA t?PRINT
JR Z,scheddo
CPA t?CALL
JR Z,scheddo
CPA t?DATA
;; Not valid, clear the alarm and check next
JR NZ,schedackdonexttime

scheddo:
PUSH BC

PUSH HL
;; Retrieve the 6 binary values for the parameters from
;; the 5 bytes: DD AA BBCC HHLL
LDA &05
STA L
ADD BC

scheddoargloop:
LDD (BC)
PUSH A ; Push register values: D A BC HL
DJC scheddoargloop
POP DE
LDA E
POP BC
POP HL
;; Call the MT-kernel
CALL t?KRNREQ
POP HL
POP BC
;; Clear the alarm and check next
JR schedackdonexttime

schedread:
;; A incoming message is read. Check for a free alarm
;; entry the alarm array
LD D,<schedtab
LD E,>schedtab
LD L,[-1]schednbtime

schedfetchfreeloop:
LDA (DE)
CPA &FF
JR Z,schedfree
LDA &08
ADD DE
DJC schedfetchfreeloop
;; Nothing free... Check for alarm
JR schedtime

schedfree:
;; Alarm free, read the ASCII HhMm from the message
;; and convert to binary values
LD L,&01

schedconvhrmn:
LDI (BC)
AND &0F
AEX
STA H
LDI (BC)
AND &0F
RCF
ADC H
STI (DE)
DJC schedconvhrmn
;; Copy the 6 bytes into the alarm array
LD L,&05

schedcploop:
LDI
DJC schedcploop
;; Check for alarm
JR schedtime

.BYTE

schedHR:
&00

schedMN:
&00

schedtab:
.FILL: 0050 WITH &FF

schedqueue:
.SKIP: 0018

schedmsg:
.SKIP: 0018

.END

7/ Build programs for MTASK2015 with the lhTools

To build a task program for MTASK2015, the source mtask2015.inc should be included
into the source code. This file defines the t?KRNRQ entry point (&79FA) and all MT-kernel-
requests id and all error codes.

Example:

.INCLUDE: mtask2015.inc

.CODE

.PRINT2 " &" ex1 ": Example 1 - Flip-flop the II indicator"
ex1:

LDA (HIGHLCDFLAG)
XOR &20
STA (HIGHLCDFLAG)

;; Pause task for a delay of 0x80 ticks
LD B,&00
LD C,&80
LD D,t?PAUSE
CALL t?KRNREQ
JR ex1

.END

The source ex1.asm should just be assembled by the assembler with lhasm ex1.asm to
produce a binary file ex1.bin located at &40C5. Refer to the lhTools documentation for
further informations (http://www.pc1500.com/lhTools.html).

To build a BASIC program using TASK, the keyword file taskbas.kyw should be
imported into the BASIC source. This file defines the TASK instruction for BASIC compiler.

Example:

.IMPORT: taskbas.kyw

.BASIC
10 TASK ARUN
20 TASK DIM &78C0,&40
30 TASK READ WAIT M$
40 PRINT "Message from t?READ: ";M$
50 BEEP 5:END

.END

The BASIC source t1.bas should just be compiled by the assembler with lhasm
t1.bas to produce a binary file t1.bin. When downloading BASIC images built on the
PC-1500, to decompile the BASIC, just call lhdump -K taskbas.kyw image.bin.

8/ Internals

The TCB (Task-Control-Block) is used to store some informations about the tasks. It
contains the status, the priority, the pause delay, the stack address, the MT-kernel request, the
goto handler and its mask, the timer, the queue, the lockid ant the the lock-count.

The TCB array contains 8 entries, is located at the following addresses and needs 128 bytes.
CE-151 CE-155 CE-159 CE-161 PC-1500A

TCB &4100 &3900 &2100 &0100 &7F00
schdcnt &4180 &3980 &2180 &0180 &7F81
curtask &4181 &3981 &2181 &0181 &7F80

The TCB structure:
byte 0 : status and priority

bit7 : 80 := waiting (t?WAIT t?PRINTWAIT t?READWAIT)
bit6 : 40 := inputing (t?INPUT t?PRINTINPUT)
bit5 : 20 := paused (t?PAUSE)
bit4 : 10 := stopped (t?STOP)
bit3 : 08 := calling (t?CALL)
bit2-0: 0p := priority from 0..7 (t?NEW)

byte 1-2: delay counter (t?PAUSE)
byte 3-4: stack address
byte 5 : MT-kernel request
byte 6-7: goto event handler address (t?GOTO)
byte 8 : goto event mask (t?ON t?OFF)
byte 9-A: timer counter (t?TIME)
byte B-C: queue address (t?DIM)
byte D : Not Used
byte E : lock id (t?LOCK t?UNLOCK)
byte F : counter value (t?PEEK t?POKE)

The curtask byte is the current running TID (bit6-4=TID bit7,3-0=0).

The schdcnt byte is a value incremented at each scheduler pulse (&00..&FF).

Note: Do not manipulate or change these structures or bytes manually. A crash may
occur if these structures are corrupted.

9/ License

Copyright 1992-1993-2015 Christophe Gottheimer <cgh75015@gmail.com>

MTASK2015 is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 2 as published by the Free Software Foundation. Note
that I am not granting permission to redistribute or modify MTASK2015 under the terms of
any later version of the General Public License.

This program is distributed in the hope that it will be useful (or at least amusing), but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program (in the file "COPYING"); if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

